Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bonding intermediate forms

When allene derivatives are treated with aryl halides in the presence of Pd(0), the aryl group is introduced to the central carbon by insertion of one of the allenic bonds to form the 7r-allylpalladium intermediate 271, which is attacked further by amine to give the allylic amine 272. A good ligand for the reaction is dppe[182]. Intramolecular reaction of the 7-aminoallene 273 affords the pyrrolidine derivative 274[183]. [Pg.166]

C 1 IS more reactive because the intermediate formed by electrophilic attack there IS a relatively stable carbocation A benzene type pattern of bonds is retained m one nng and the positive charge is delocalized by allylic resonance... [Pg.506]

Multicomponent Silicate Systems. Most commercial glasses fall into the category of sihcates containing modifiers and intermediates. Addition of a modifier such as sodium oxide, Na20, to the siUca network alters the stmcture by cleaving the Si—O—Si bonds to form Si—0-Na linkages (see Fig. 3c). [Pg.288]

The mechanism of the cobalt-cataly2ed oxo reaction has been studied extensively. The formation of a new C—C bond by the hydroformylation reaction proceeds through an organometaUic intermediate formed from cobalt hydrocarbonyl which is regenerated in the aldehyde-forrning stage. The mechanism (5,6) for the formation of propionaldehyde [123-38-6] from ethylene is illustrated in Figure 1. [Pg.466]

In order for a substitution to occur, a n-complex must be formed. The term a-complex is used to describe an intermediate in which the carbon at the site of substitution is bonded to both the electrophile and the hydrogen that is displaced. As the term implies, a a bond is formed at the site of substitution. The intermediate is a cyclohexadienyl cation. Its fundamental structural characteristics can be described in simple MO terms. The a-complex is a four-7t-electron delocalized system that is electronically equivalent to a pentadienyl cation (Fig. 10.1). There is no longer cyclic conjugation. The LUMO has nodes at C-2 and C-4 of the pentadienyl structure, and these positions correspond to the positions meta to the site of substitution on the aromatic ring. As a result, the positive chargex)f the cation is located at the positions ortho and para to the site of substitution. [Pg.553]

It has been proposed that oxygen adds to the excited keto group [- (112)]. The rearrangement of the resulting hydroxyhydroperoxy diradical (112) could then proceed by intramolecular hydrogen abstraction involving a six-membered cyclic transition state, followed by fission of the former C —CO bond to form the unsaturated peracid (113) as the precursor of the final product. Such a reaction sequence demands a hydrogen atom in the J -position sterically accessible to the intermediate hydroperoxy radical. [Pg.317]

Hydration of alkynes (Section 9.12) Reaction occurs by way of an enol intermediate formed by Markovnikov addition of water to the triple bond. [Pg.710]

In this paper, we study the stabihty of the carbonium ion intermediate formed in the cleavage of a glycosidic bond by lysozyme. It is found that the electrostatic stabilization is an important factor in increasing the rate of the reaction step that leads to the formation of the carbonium ion intermediate. Steric factors, such as the strain of the substrate on binding to lysozyme, do not seem to contribute significantly. [Pg.261]

Apparently, aminobutenyne A, the intermediate of the pyrrole synthesis, is fixed in an advantageous eonfiguration by eoordination to the Cu eation, whereas the absenee of eatalyst may result in the formation of imine B having an aetive methylene group whieh attaeks the aeetylene bond to form dihydropyridine C and then pyridine 2 (by dehydrogenation). [Pg.160]

Aikene chemistry is dominated by electrophilic addition reactions. When HX reacts with an unsymmetrically substituted aikene, Markovnikov s rule predicts that the H will add to the carbon having fewer alky) substituents and the X group will add to the carbon having more alkyl substituents. Electrophilic additions to alkenes take place through carbocation intermediates formed by reaction of the nucleophilic aikene tt bond with electrophilic H+. Carbocation stability follows the order... [Pg.204]

Before seeing how electrophilic aromatic substitutions occur, let s briefly recall what we said in Chapler 6 about electrophilic alkene additions. When a reagent such as HCl adds to an alkene, the electrophilic hydrogen approaches the p orbitals of the double bond and forms a bond to one carbon, leaving a positive charge at the other carbon. This carbocation intermediate then reacts with the nucleophilic Cl- ion to yield the addition product. [Pg.548]

Imine formation and enamine formation appear different because one leads to a product with a C=N bond and the other leads to a product with a C=C bond. Actually, though, the reactions are quite similar. Both are typical examples of nucleophilic addition reactions in which water is eliminated from the initially formed tetrahedral intermediate and a new C=Nu bond is formed. [Pg.710]


See other pages where Bonding intermediate forms is mentioned: [Pg.407]    [Pg.407]    [Pg.407]    [Pg.407]    [Pg.152]    [Pg.239]    [Pg.89]    [Pg.253]    [Pg.254]    [Pg.501]    [Pg.865]    [Pg.893]    [Pg.982]    [Pg.1282]    [Pg.82]    [Pg.179]    [Pg.452]    [Pg.221]    [Pg.124]    [Pg.96]    [Pg.96]    [Pg.353]    [Pg.371]    [Pg.637]    [Pg.745]    [Pg.254]    [Pg.501]    [Pg.893]    [Pg.230]    [Pg.108]    [Pg.655]    [Pg.47]    [Pg.356]    [Pg.370]    [Pg.169]    [Pg.26]    [Pg.56]    [Pg.317]    [Pg.73]    [Pg.169]   
See also in sourсe #XX -- [ Pg.32 , Pg.45 , Pg.48 ]




SEARCH



Bond-forming

Intermediate form

© 2024 chempedia.info