Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermediate catalyst deactivation

Intermediate Catalyst Deactivation. Except the coke-controlled regime, an increase in the metal layer thickness in the pore mouth may be a major cause of the slow deactivation following the initial fast deactivation period as pointed out, though Figure 4 shows a slight decrease in the active sites due to metal poisoning during this period. [Pg.217]

Because soHd acid catalyst systems offer advantages with respect to their handling and noncorrosive nature, research on the development of a commercially practical soHd acid system to replace the Hquid acids will continue. A major hurdle for soHd systems is the relatively rapid catalyst deactivation caused by fouling of the acid sites by heavy reaction intermediates and by-products. [Pg.47]

The selectivity in a system of parallel reactions does not depend much on the catalyst size if effective diffusivities of reactants, intermediates, and products are similar. The same applies to consecutive reactions with the product desired being the final product in the series. In contrast with this, for consecutive reactions in which the intermediate is the desired product, the selectivity much depends on the catalyst size. This was proven by Edvinsson and Cybulski (1994, 1995) for. selective hydrogenations and also by Colen et al. (1988) for the hydrogenation of unsaturated fats. Diffusion limitations can also affect catalyst deactivation. Poisoning by deposition of impurities in the feed is usually slower for larger particles. However, if carbonaceous depositions are formed on the catalyst internal surface, ageing might not depend very much on the catalyst size. [Pg.388]

These results demonstrate that the catalyst is partially deactivated during recycle. The high disulfide yield on recycle strongly suggests that the disulfide is an intermediate to the thiol final product. Both H2S and HCN are possible sources of catalyst deactivation. [Pg.140]

The hydrocarbon catalytic cracking is also a chain reaction. It involves adsorbed carbonium and carbenium ions as active intermediates. Three elementary steps can describe the mechanism initiation, propagation and termination [6]. The catalytic cracking under supercritical conditions is relatively unknown. Nevertheless, Dardas et al. [7] studied the n-heptane cracking with a commercial acid catalyst. They observed a diminution of the catalyst deactivation (by coking) compared to the one obtained under sub-critical conditions. This result is explained by the extraction of the coke precursors by the supercritical hydrocarbon. [Pg.350]

Several important classes of polar monomers have so far eluded copolymerization by the Pd(II) system. Vinyl chloride insertion, for example, leads to catalyst deactivation following P-halide elimination to form inert chloride species such as 1.32, as shown by Jordan [90], Similarly, attempted vinyl acetate copolymerization results in deactivation by an analogous acetate elimination process, although the ester chelate intermediate that forms after insertion also effectively shuts down the reaction [90], Therefore, -elimination of polar groups represents a significant and unresolved problem for late transition metal polymerization systems unless access of the metal to it is restricted. [Pg.199]

The fact that complex 38 does not react further - that is, it does not oxidatively add the N—H bond - is due to the comparatively low electron density present on the Ir center. However, in the presence of more electron-rich phosphines an adduct similar to 38 may be observed in situ by NMR (see Section 6.5.3 see also below), but then readily activates N—H or C—H bonds. Amine coordination to an electron-rich Ir(I) center further augments its electron density and thus its propensity to oxidative addition reactions. Not only accessible N—H bonds are therefore readily activated but also C—H bonds [32] (cf. cyclo-metallations in Equation 6.14 and Scheme 6.10 below). This latter activation is a possible side reaction and mode of catalyst deactivation in OHA reactions that follow the CMM mechanism. Phosphine-free cationic Ir(I)-amine complexes were also shown to be quite reactive towards C—H bonds [30aj. The stable Ir-ammonia complex 39, which was isolated and structurally characterized by Hartwig and coworkers (Figure 6.7) [33], is accessible either by thermally induced reductive elimination of the corresponding Ir(III)-amido-hydrido precursor or by an acid-base reaction between the 14-electron Ir(I) intermediate 53 and ammonia (see Scheme 6.9). [Pg.161]

The importance of catalyst stability is often underestimated not only in academia but also in many sectors of industry, notably in the fine chemicals industry, where high selectivities are the main objective (1). Catalyst deactivation is inevitable, but it can be retarded and some of its consequences avoided (2). Deactivation itself is a complex phenomenon. For instance, active sites might be poisoned by feed impurities, reactants, intermediates and products (3). Other causes of catalyst deactivation are particle sintering, metal and support leaching, attrition and deposition of inactive materials on the catalyst surface (4). Catalyst poisons are usually substances, whose interaction with the active surface sites is very strong and irreversible, whereas inhibitors generally weakly and reversibly adsorb on the catalyst surface. Selective poisons are sometimes used intentionally to adjust the selectivity of a particular reaction (2). [Pg.235]

Although the reaction classes discussed earlier are sufficient to describe the hydrocarbon conversion kinetics, an understanding of the elementary reaction sequence is needed to describe catalyst deactivation. Several of the overall reactions require formation of olefinic intermediates in their elementary reaction sequence. Ultimately, these olefinic intermediates lead to coke formation and subsequent catalyst deactivation. For example, the ring closure reaction... [Pg.200]

Catalyst deactivation is primarily caused by the blockage of active sites due to the coke formed from these olefinic intermediates. Higher hydrogen pressures suppress the diolefin formation, making the selectivity between olefinic intermediates and liquid products (in contrast to coke products) more favorable. However, higher pressures reduce selectivity to aromatics in the desired liquid product. Thus, a rigorous model must accurately predict not only the rates of product formation, but also the formation of coke precursors... [Pg.200]

Blount and Falconer [54] further examined the photocatalytic oxidation of toluene using TPH. During TPH analysis of used catalyst samples, the strongly bound intermediates observed by Larson and Falconer [43] were reported to be hydrogenated and desorbed predominantly as toluene, along with smaller quantities of benzene. This indicated that the intermediate species responsible for apparent catalyst deactivation during toluene photooxidation retained an aromatic ring structure. [Pg.266]

Mendez-Roman and Cardona-Martinez [55] examined titanium dioxide catalysts with FTIR spectroscopy during the photocatalytic oxidation of toluene. Reaction intermediates, believed to be benzaldehyde and benzoic acid, were reported to accumulate on catalyst samples. This accumulation of intermediates was found to be reduced in the presence of gas-phase water. Mendez-Roman and Cardona-Martinez concluded that toluene appeared to be converted to benzaldehyde, which was then oxidized further to form benzoic acid. They suggested that the accumulation of benzoic acid led to the observed apparent catalyst deactivation. Other researchers, however, have argued that benzoic acid is unlikely to be the compound responsible for apparent deactivation in the photocatalytic oxidation of aromatics. For example, Larson and Falconer [43] concluded, based on higher CO2 evolution rates for benzoic acid relative to toluene during photooxidation, that benzoic acid was not sufficiently recalcitrant to be responsible for the deactivation seen with aromatic contaminants. [Pg.267]

Photocatalytic oxidation over illuminated titanium dioxide has been demonstrated to be effective at removing low concentrations of a variety of hazardous aromatic contaminants from air at ambient temperatures. At low contaminant concentration levels and modest humidity levels, complete or nearly complete oxidation of aromatic contaminants can be obtained in photocatalytic systems. Although aromatic contaminants are less reactive than many other potential air pollutants, and apparent catalyst deactivation may occur in simations where recalcitrant reaction intermediates build up on the catalyst surface, several approaches have already been developed to counter these potential problems. The introduction of a chlorine source, either in the form of a reactive chloro-olefin cofeed or an HCl-pretreated catalyst, has been demonstrated to promote the photocatalytic oxidation of... [Pg.279]

Thermodynamic equilibria are independent of the route by which they are established (provided such routes are available). The rates with which such equilibria are achieved depend on the energies of the transition states involved. The strain energies of the intermediates in the adamantane rearrangement will be reflected in the transition states for their formation. If one step in the rearrangement involves the formation of an excessively strained intermediate not only will the overall rearrangement be retarded but also undesirable side reactions including fragmentation and catalyst deactivation, will be able to compete more effectively. [Pg.16]


See other pages where Intermediate catalyst deactivation is mentioned: [Pg.353]    [Pg.91]    [Pg.353]    [Pg.91]    [Pg.2091]    [Pg.59]    [Pg.559]    [Pg.95]    [Pg.27]    [Pg.40]    [Pg.354]    [Pg.397]    [Pg.452]    [Pg.102]    [Pg.252]    [Pg.66]    [Pg.212]    [Pg.60]    [Pg.4]    [Pg.508]    [Pg.113]    [Pg.338]    [Pg.50]    [Pg.278]    [Pg.32]    [Pg.58]    [Pg.858]    [Pg.562]    [Pg.41]    [Pg.385]    [Pg.413]    [Pg.295]    [Pg.78]    [Pg.171]    [Pg.89]    [Pg.66]    [Pg.164]   


SEARCH



Catalyst deactivating

Catalyst deactivation

Catalysts deactivated

Intermediate catalyst

Intermediate catalyst deactivation process

© 2024 chempedia.info