Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interface solid surface

Different layered substances on solids Self-assembly structures at interfaces Solid surfaces... [Pg.228]

If a is smaller than one mixed solid-fluid phase occurs, the edge free energies are zero and the crystal interface solid surface is in essence rough and the crystal can grow without a layer mechanism. At this stage the overall crystallographic orientation (hkl) will also be lost. [Pg.35]

The interface between a solid and its vapor (or an inert gas) is discussed in this chapter from an essentially phenomenological point of view. We are interested in surface energies and free energies and in how they may be measured or estimated theoretically. The study of solid surfaces at the molecular level, through the methods of spectroscopy and diffraction, is taken up in Chapter VIII. [Pg.257]

A number of methods that provide information about the structure of a solid surface, its composition, and the oxidation states present have come into use. The recent explosion of activity in scanning probe microscopy has resulted in investigation of a wide variety of surface structures under a range of conditions. In addition, spectroscopic interrogation of the solid-high-vacuum interface elucidates structure and other atomic processes. [Pg.293]

This chapter and the two that follow are introduced at this time to illustrate some of the many extensive areas in which there are important applications of surface chemistry. Friction and lubrication as topics properly deserve mention in a textbook on surface chemistiy, partly because these subjects do involve surfaces directly and partly because many aspects of lubrication depend on the properties of surface films. The subject of adhesion is treated briefly in this chapter mainly because it, too, depends greatly on the behavior of surface films at a solid interface and also because friction and adhesion have some interrelations. Studies of the interaction between two solid surfaces, with or without an intervening liquid phase, have been stimulated in recent years by the development of equipment capable of the direct measurement of the forces between macroscopic bodies. [Pg.431]

D. W. Dwight, M. E. Counts, and J. P. Wightman, Colloid and Interface Science, Vol. ni. Adsorption, Catalysis, Solid Surfaces, Wetting, Surface Tension, and Water, Academic, New York, 1976, p. 143. [Pg.464]

Clearly, it is important that there be a large contact angle at the solid particle-solution-air interface. Some minerals, such as graphite and sulfur, are naturally hydrophobic, but even with these it has been advantageous to add materials to the system that will adsorb to give a hydrophobic film on the solid surface. (Effects can be complicated—sulfur notability oscillates with the number of preadsoibed monolayers of hydrocarbons such as n-heptane [76].) The use of surface modifiers or collectors is, of course, essential in the case of naturally hydrophilic minerals such as silica. [Pg.476]

The cleaning process proceeds by one of three primary mechanisms solubilization, emulsification, and roll-up [229]. In solubilization the oily phase partitions into surfactant micelles that desorb from the solid surface and diffuse into the bulk. As mentioned above, there is a body of theoretical work on solubilization [146, 147] and numerous experimental studies by a variety of spectroscopic techniques [143-145,230]. Emulsification involves the formation and removal of an emulsion at the oil-water interface the removal step may involve hydrodynamic as well as surface chemical forces. Emulsion formation is covered in Chapter XIV. In roll-up the surfactant reduces the contact angle of the liquid soil or the surface free energy of a solid particle aiding its detachment and subsequent removal by hydrodynamic forces. Adam and Stevenson s beautiful photographs illustrate roll-up of lanoline on wood fibers [231]. In order to achieve roll-up, one requires the surface free energies for soil detachment illustrated in Fig. XIII-14 to obey... [Pg.485]

Because of the generality of the symmetry principle that underlies the nonlinear optical spectroscopy of surfaces and interfaces, the approach has found application to a remarkably wide range of material systems. These include not only the conventional case of solid surfaces in ultrahigh vacuum, but also gas/solid, liquid/solid, gas/liquid and liquid/liquid interfaces. The infonnation attainable from the measurements ranges from adsorbate coverage and orientation to interface vibrational and electronic spectroscopy to surface dynamics on the femtosecond time scale. [Pg.1265]

Catalysis in a single fluid phase (liquid, gas or supercritical fluid) is called homogeneous catalysis because the phase in which it occurs is relatively unifonn or homogeneous. The catalyst may be molecular or ionic. Catalysis at an interface (usually a solid surface) is called heterogeneous catalysis, an implication of this tenn is that more than one phase is present in the reactor, and the reactants are usually concentrated in a fluid phase in contact with the catalyst, e.g., a gas in contact with a solid. Most catalysts used in the largest teclmological processes are solids. The tenn catalytic site (or active site) describes the groups on the surface to which reactants bond for catalysis to occur the identities of the catalytic sites are often unknown because most solid surfaces are nonunifonn in stmcture and composition and difficult to characterize well, and the active sites often constitute a small minority of the surface sites. [Pg.2697]

The downward velocity profile u x) where x = 0 at the solid surface and I = 8 at the liquid/gas interface is given by... [Pg.669]

Sputtered Neutral Mass Spectrometry (SNMS) is the mass spectrometric analysis of sputtered atoms ejected from a solid surface by energetic ion bombardment. The sputtered atoms are ionized for mass spectrometric analysis by a mechanism separate from the sputtering atomization. As such, SNMS is complementary to Secondary Ion Mass Spectrometry (SIMS), which is the mass spectrometric analysis of sputtered ions, as distinct from sputtered atoms. The forte of SNMS analysis, compared to SIMS, is the accurate measurement of concentration depth profiles through chemically complex thin-film structures, including interfaces, with excellent depth resolution and to trace concentration levels. Genetically both SALI and GDMS are specific examples of SNMS. In this article we concentrate on post ionization only by electron impact. [Pg.43]

EXAFS is a nondestructive, element-specific spectroscopic technique with application to all elements from lithium to uranium. It is employed as a direct probe of the atomic environment of an X-ray absorbing element and provides chemical bonding information. Although EXAFS is primarily used to determine the local structure of bulk solids (e.g., crystalline and amorphous materials), solid surfaces, and interfaces, its use is not limited to the solid state. As a structural tool, EXAFS complements the familiar X-ray diffraction technique, which is applicable only to crystalline solids. EXAFS provides an atomic-scale perspective about the X-ray absorbing element in terms of the numbers, types, and interatomic distances of neighboring atoms. [Pg.215]

When a gas comes in contact with a solid surface, under suitable conditions of temperature and pressure, the concentration of the gas (the adsorbate) is always found to be greater near the surface (the adsorbent) than in the bulk of the gas phase. This process is known as adsorption. In all solids, the surface atoms are influenced by unbalanced attractive forces normal to the surface plane adsorption of gas molecules at the interface partially restores the balance of forces. Adsorption is spontaneous and is accompanied by a decrease in the free energy of the system. In the gas phase the adsorbate has three degrees of freedom in the adsorbed phase it has only two. This decrease in entropy means that the adsorption process is always exothermic. Adsorption may be either physical or chemical in nature. In the former, the process is dominated by molecular interaction forces, e.g., van der Waals and dispersion forces. The formation of the physically adsorbed layer is analogous to the condensation of a vapor into a liquid in fret, the heat of adsorption for this process is similar to that of liquefoction. [Pg.736]

Surface SHG [4.307] produces frequency-doubled radiation from a single pulsed laser beam. Intensity, polarization dependence, and rotational anisotropy of the SHG provide information about the surface concentration and orientation of adsorbed molecules and on the symmetry of surface structures. SHG has been successfully used for analysis of adsorption kinetics and ordering effects at surfaces and interfaces, reconstruction of solid surfaces and other surface phase transitions, and potential-induced phenomena at electrode surfaces. For example, orientation measurements were used to probe the intermolecular structure at air-methanol, air-water, and alkane-water interfaces and within mono- and multilayer molecular films. Time-resolved investigations have revealed the orientational dynamics at liquid-liquid, liquid-solid, liquid-air, and air-solid interfaces [4.307]. [Pg.264]

Eq. 3 may also be derived heuristically by making a balance of horizontal forces on a small section of the interline as shown in Fig. 4. This treats the solid surface and the solid-liquid interface as though they were in states of tension given by their respective surface energies. The vertical force ytsin in such a construction is balanced by stresses in the underlying solid. [Pg.9]

JKR type mea.surement.s on monolayers depo.sited on. soft elastomers. The recent interest in the JKR experiments has been stimulated by the work of Chaudhury and coworkers [47-50J. In a 1991 paper, Chaudhury and White-sides [47] reported their extensive studies on the measurement of interfacial work of adhesion and surface energies of elastomeric solids. The motivation for this work was to study the physico-organic chemistry of solid surfaces and interfaces. [Pg.101]

FIG. 3 Schematic sketch of an interface between fluid and solid, or alternatively a surface step. The interface (or surface step) is characterized locally through the surface tension, the orientation ii, and the radius of curvature R. [Pg.875]

Powling (P7) recently reported on the results of an extensive study of the combustion characteristics of ammonium perchlorate-based composite propellants. The nature of the chemical processes taking place at the solid-gas interface and the possibility of heat release in the condensed phase were considered. Although the evidence is that some heat release is likely to occur within the solid surface, Powling found that the combustion in all pressure regions appears to be dominated by gas-phase reactions. [Pg.49]


See other pages where Interface solid surface is mentioned: [Pg.29]    [Pg.154]    [Pg.29]    [Pg.154]    [Pg.110]    [Pg.362]    [Pg.398]    [Pg.467]    [Pg.1264]    [Pg.1794]    [Pg.2743]    [Pg.2743]    [Pg.2767]    [Pg.2772]    [Pg.2903]    [Pg.124]    [Pg.264]    [Pg.8]    [Pg.1]    [Pg.3]    [Pg.21]    [Pg.102]    [Pg.354]    [Pg.398]    [Pg.1215]    [Pg.447]    [Pg.138]    [Pg.170]    [Pg.532]    [Pg.1175]    [Pg.947]    [Pg.46]   
See also in sourсe #XX -- [ Pg.1026 ]

See also in sourсe #XX -- [ Pg.1026 ]




SEARCH



Hydrophilic surface, liquid-solid interface

Solid Interface

Solid surfaces and interfaces

Solid-liquid interface surface Gibbs free energy

Solid-liquid interface surface entropy

Solid-liquid interface surface free energy

Solid—solution interface, surface complexation

Surface Space Charge at the Solid-Liquid Interface

Surface complexation models solid-solution interface

Surface interface

Surface tension component method liquid-solid interface

Surfaces solid-water interface

© 2024 chempedia.info