Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intensification of hazardous materials

The best way to deal with a hazard in a flowsheet is to remove it completely. The provision of safety systems to control the hazard is much less satisfactory. One of the principal approaches to making a process inherently safe is to limit the inventory of hazardous material, called intensification of hazardous material. The inventories we wish to avoid most of all are flashing flammable liquids or flashing toxic liquids. [Pg.262]

Once the process route has been chosen, it may be possible to synthesize flowsheets that do not require large inventories of materials in the process. The design of the reaction and separation system is particularly important in this respect, but heat transfer, storage, and pressure relief systems are also important. [Pg.262]

Clearly, the potential hazard from runaway reactions is reduced by reducing the inventory of material in the reactor. Batch operation requires a larger inventory than the corresponding continuous reactor. Thus there may be a safety incentive to change from batch to continuous operation. Alternatively, the batch operation can be [Pg.262]

Distillation. There is a large inventory of boiling liquid, sometimes under pressure, in a distillation column, both in the base and held up in the column. If a sequence of columns is involved, then, as discussed in Chap. 5, the sequence can be chosen to minimize the inventory of hazardous material. If all materials are equally hazardous, then choosing the sequence that tends to minimize the flow rate of nonkey components also will tend to minimize the inventory. Use of the dividing-wall column shown in Fig. 5.17c will reduce considerably the inventory relative to two simple columns. Dividing-wall columns are inherently safer than conventional arrangements because they lower not only the inventory but also the number of items of equipment and hence lower the potential for leaks. [Pg.263]

The column inventory also can be reducdd by the use of low-holdup column internals, including the holdup in the column base. As the design progresses, other features can be included to reduce the inventory. Thermosyphon reboilers have a lower inventory than kettle reboilers. Peripheral equipment such as reboilers can be located inside the column.  [Pg.263]


Intensification of hazardous materials results in a safer process. In... [Pg.266]

So far the emphasis has been on substituting hazardous materials or using less, i.e., intensification. Let us now consider use of hazardous materials under less hazardous conditions, i.e. at less extreme temperatures or pressures or as a vapor rather than superheated liquid or diluted, in other words, attenuation. ... [Pg.267]

Many of the incidents in this book were the result of leaks of hazardous materials, and the recommendations describe ways of preventing leaks by providing better equipment or procedures. As we have seen, equipment can fail or can be neglected, and procedures can lapse. The most effective methods, therefore, of preventing leaks of hazardous materials are to use so little that it hardly matters if it all leaks out (intensification or minimization) or to use a safer material instead (substitution). If we cannot do this and have to store or handle large amounts of hazardous material, we should store or handle it in the least hazardous form (attenuation or moderation). Plants in which this is done are said to be inherently safer because they are not dependent on added-on equipment or procedures that might fail the hazard is avoided rather than controlled, and the safety is inherent in the design. [Pg.367]

Minimization goes much further than storage, however. For many processes the largest inventory of hazardous materials is in the reactor. If, through radical reactor design, inventories and equipment size can be reduced whilst throughput is maintained, then this presents opportunities for improved safety and possibly reduced capital costs. This is the concept behind Process Intensification which is discussed more fully below. [Pg.243]

Many potential applications are under study. Miniature chemical reactors could be used for portable applications in which they provide advantages of rapid startup and shutdown and of increased safety (intensification by requiring only small quantities of hazardous materials). The development of chip-scale chemical and biological analysis systems has the potential to reduce the time and cost associated with conventional laboratory methods. These devices could be used as portable analysis systems for detection of hazardous chemicals in air and water. There is considerable interest in using a microreactor to provide in situ production of hydrogen for small-scale fuel-cell power applications by conducting a reformation reaction from some liquid hydrocarbon raw material (e.g., methanol). [Pg.415]

Minimize Significantly reduce the quantity of hazardous material or energy in the system, or eliminate the hazard entirely if possible. It is necessary to use small quantities of hazardous substances or energy in (i) storage, (ii) intermediate storage, (iii) piping and (iv) process equipment, as discussed in the previous sections. The benefits are to reduce the consequence of incident (explosion, fire, toxic material release), and improve the effectiveness and feasibility of other protective systems (e.g. secondary containment, reactor dump or quench systems). Process intensification (see below) is also a way to reach this objective. [Pg.50]

Attenuation Another alternative to intensification is attenuation, using a hazardous material under the least hazardous conditions. Thus large quantities of liquefied chlorine, ammonia, and petroleum gas can be stored as refrigerated liquids at atmospheric pressure instead of storing them under pressure at ambient temperature. (Leaks from the refrigeration eqmpment should also be considered, so there is probably no net gain in refrigerating quantities less than a few hundred tons.) Dyestuffs which form explosive dusts can be handled as slurries. [Pg.2267]

Minimize (intensification) Change from large batch reactor to a smaller continuous reactor Reduce storage inventory of raw materials Improve control to reduce inventory of hazardous intermediate chemicals Reduce process hold-up... [Pg.22]

If intensification and substitution are not possible or practicable, an alternative is attenuation. This means carrying out a hazardous reaction under less hazardous conditions, or storing or transporting a hazardous material in a less hazardous form. Attenuation is sometimes the reverse of intensification, because less extreme reaction conditions may lead to a longer residence time. [Pg.35]

Intensification or Minimization One approach is to use so little hazardous material that it does not matter if it all leaks out. For example, at Bhopal methyl isocyanate (MIC), the material that leaked and killed over 2000 people, was an intermediate that was convenient but not essential to store. Within a few years many companies had reduced their stocks of MIC and other hazardous intermediates. [Pg.38]

Finally, the potential of threat is reduced if hazardous materials are less available. In this vein, more work is needed on process intensification and process... [Pg.20]

Although there are many advantages of applying process intensification, there are some aspects that will invariably need to be managed. Some of these issues to be managed are a potential for decreased inherent safety as there will be less incentive to ehminate hazardous materials, given that the inventories are minimized a potential for reaction runaway if heat transfer is not sufficient, given a reduction of solvent used a potential for... [Pg.366]

Intensification One attenpts to use less of the hazardous materials. In terms of a hazardous intermediate, the two processes could be more closely coupled, reducing or eliminating the inventory of the intermediate. The inventories of hazardous feeds or products can be reduced by enhanced scheduling techniques such as just-in-time (JIT) manufacturing [131. [Pg.810]


See other pages where Intensification of hazardous materials is mentioned: [Pg.262]    [Pg.262]    [Pg.372]    [Pg.243]    [Pg.94]    [Pg.244]    [Pg.480]    [Pg.500]    [Pg.54]    [Pg.9]    [Pg.29]    [Pg.243]    [Pg.478]    [Pg.441]    [Pg.478]    [Pg.492]    [Pg.419]    [Pg.131]    [Pg.810]    [Pg.328]    [Pg.8]   
See also in sourсe #XX -- [ Pg.262 , Pg.263 , Pg.264 , Pg.265 , Pg.266 ]




SEARCH



Hazard hazardous materials

Hazardous materials

Intensification

Material hazards

© 2024 chempedia.info