Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Instrumentation Fourier transform systems

The most common types of MS/MS instruments available to researchers in food chemistry include triple quadrupole mass spectrometers and ion traps. Less common but commercially produced tandem mass spectrometers include magnetic sector instruments, Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, and quadrupole time-of-flight (QTOF) hybrid instruments (Table A.3A.1). Beginning in 2001, TOF-TOF tandem mass spectrometers became available from instrument manufacturers. These instruments have the potential to deliver high-resolution tandem mass spectra with high speed and should be compatible with the chip-based chromatography systems now under development. [Pg.1328]

Historically, Fourier spectroscopy was developed for use in the far-infrared and mid-infrared spectral regions. Commercially available Fourier transform systems today are operating primarily in these spectral regions. The extension of Fourier transform spectroscopy to shorter wavelengths has been proposed21 22 and demonstrated.23-25 However, rapid commercialization of Fourier transform instrumentation for visible /UV spectroscopy is not occuring. Instead, visible/UV Fourier transform spectroscopy is being done in just a few spectroscopy laboratories with specialized, one-of-a-kind instrumentation. [Pg.422]

The frequency of radiation used in NMR depends on the field strength of the magnet used in the instrument. Frequencies range fi om 60 to 600 MHz for commercial instruments. Modem NMR equipment uses RF pulses in Fourier transform systems. There are no safety concerns associated with these frequencies of radiation. [Pg.319]

It should be pointed out that FAB, MALDI, and ESI can be used to provide ions for peptide mass maps or for microsequencing and that any kind of ion analyzer can support searches based only on molecular masses. Fragment or sequence ions are provided by instruments that can both select precursor ions and record their fragmentation. Such mass spectrometers include ion traps, Fourier transform ion cyclotron resonance, tandem quadrupole, tandem magnetic sector, several configurations of time-of-flight (TOF) analyzers, and hybrid systems such as quadrupole-TOF and ion trap-TOF analyzers. [Pg.262]

So far, we have shown where the signal comes from, but how do we measure it There are two main technologies continuous wave (CW) and pulsed Fourier transform (FT). CW is the technology used in older systems and is becoming hard to find these days. (We only include it for the sake of historical context and because it is perhaps the easier technology to explain). FT systems offer many advantages over CW and they are used for all high field instruments. [Pg.4]

Several modem analytical instruments are powerful tools for the characterisation of end groups. Molecular spectroscopic techniques are commonly employed for this purpose. Nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and mass spectrometry (MS), often in combination, can be used to elucidate the end group structures for many polymer systems more traditional chemical methods, such as titration, are still in wide use, but employed more for specific applications, for example, determining acid end group levels. Nowadays, NMR spectroscopy is usually the first technique employed, providing the polymer system is soluble in organic solvents, as quantification of the levels of... [Pg.172]

Fourier transform spectroscopy technology is widely used in infrared spectroscopy. A spectrum that formerly required 15 min to obtain on a continuous wave instrument can be obtained in a few seconds on an FT-IR. This greatly increases research and analytical productivity. In addition to increased productivity, the FT-IR instrument can use a concept called Fleggetts Advantage where the entire spectrum is determined in the same time it takes a continuous wave (CW) device to measure a small fraction of the spectrum. Therefore many spectra can be obtained in the same time as one CW spectrum. If these spectra are summed, the signal-to-noise ratio, S/N can be greatly increased. Finally, because of the inherent computer-based nature of the FT-IR system, databases of infrared spectra are easily searched for matching or similar compounds. [Pg.150]

Gemini Superconducting Fourier transform NMR systems, VXR series 5, Varian Instruments, Sugar Lane, Texas, USA... [Pg.90]

The use of hber optics and hber-optic multiplexing can increase the number of analysis points, and hence can reduce the overall costs related to a single analyzer. This approach has been used successfully with NIR instrumentation, where typically up to eight points can be handled. As noted earlier, the use of hber optics with IR Fourier transform instruments has in the past been limited. New hber materials with improved optical throughput are available, and also with the considered use of IR lasers, the role of hbers for IR applications is expected to increase. Although in the past commercial multiplexers have been available for mid-lR hber systems, their use has not been widespread. [Pg.188]

The most recent advance in VCD instrumentation has been its adaptation to Fourier transform infrared (FTIR) measurement (23-25). The details of this technique involve a new method of FTIR measurement termed double-modulation FTIR spectroscopy. Thus spectra of very high quality and resolution have been obtained using a standard VCD modulator and detector, a glower source, and a commercially available FTIR spectrometer system. In fact an entire FTIR-VCD spectrometer can be assembled from a few commercially available components. It is found that the major advantages of resolution, throughput, and... [Pg.119]

A uniform approach to trace the analysis and evaluation of electrode kinetics of the Cd(II)/Cd(Hg) system with fast Fourier transform electrochemical instrumentation was presented by Schiewe et al. [34]. [Pg.771]

Fast Fourier transform instrumentation has been shown to be advantageous, both in the analytical and kinetic applications of voltammetry, for example, on Cd and Pb redox systems [43]. Active/passive transition for the Pb(Hg)/PbCl2 system has been studied using digital simulation [44]. [Pg.807]

The imaging detectors, whether for point mapping, line scanning, or array detection, can be coupled with different types of spectrometers. Instrument types are classified by wavelength selection modality into imaging Fourier transform (FT) and tunable filter (TF) spectrometers, both of which are presented below, and dispersive spectrometers. FT imaging systems are classical laboratory instruments while TF spectrometers are compact and robust systems for chemical imaging. [Pg.414]

Obviously, it is difficult to find a schematic representation for a compound absorbing 10 different frequencies. In such a case, M0 can be dissociated into many vectors, each of which precesses around the field with its own frequency (Fig. 9.7 shows a simplified situation). As the system returns to equilibrium, which can take several seconds, the instrument records a complex signal due to the combination of the different frequencies present, and the intensity of the signal decays exponentially with time (Fig. 9.9). This damped interferogram, called free induction decay (FID), contains at each instant information on the frequencies of the nuclei that have attained resonance. Using Fourier transform, this signal can be transformed from the time domain into the frequency domain to give the classical spectrum. [Pg.137]


See other pages where Instrumentation Fourier transform systems is mentioned: [Pg.5]    [Pg.232]    [Pg.148]    [Pg.27]    [Pg.117]    [Pg.417]    [Pg.289]    [Pg.35]    [Pg.4]    [Pg.480]    [Pg.313]    [Pg.395]    [Pg.343]    [Pg.345]    [Pg.426]    [Pg.4]    [Pg.368]    [Pg.205]    [Pg.248]    [Pg.229]    [Pg.165]    [Pg.133]    [Pg.132]    [Pg.74]    [Pg.205]    [Pg.269]    [Pg.148]    [Pg.60]    [Pg.121]    [Pg.693]    [Pg.226]    [Pg.91]    [Pg.16]    [Pg.195]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 , Pg.6 , Pg.7 , Pg.8 , Pg.9 ]




SEARCH



Fourier instrumentation

Fourier transform instrument

Fourier transform systems

Systems transforms

Transformation system

© 2024 chempedia.info