Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inside Reactivity

For hollow objects like the fullerenes, a general distinction has to be made between outside and inside reactivity. Modifications to the outside are termed exohedral functionalization, and those to the inside are endohedral. Both variants are observed for the fullerenes. Classical fullerene chemistry deals with exohedral functionalization by one or more groups attached to the carbon atoms. Endohedral chemistry, on the other hand, studies compounds consisting of atoms or small molecules included in the cavity within the fullerene cage. The exohedral processes may further be divided into covalent and noncovalent interactions with the reaction partner. [Pg.67]

An emulsion model that assumes the locus of reaction to be inside the particles and considers the partition of AN between the aqueous and oil phases has been developed (50). The model predicts copolymerization results very well when bulk reactivity ratios of 0.32 and 0.12 for styrene and acrylonitrile, respectively, ate used. [Pg.193]

Shielding and Stabilization. Inclusion compounds may be used as sources and reservoirs of unstable species. The inner phases of inclusion compounds uniquely constrain guest movements, provide a medium for reactions, and shelter molecules that self-destmct in the bulk phase or transform and react under atmospheric conditions. Clathrate hosts have been shown to stabiLhe molecules in unusual conformations that can only be obtained in the host lattice (138) and to stabiLhe free radicals (139) and other reactive species (1) similar to the use of matrix isolation techniques. Inclusion compounds do, however, have the great advantage that they can be used over a relatively wide temperature range. Cyclobutadiene, pursued for over a century has been generated photochemicaHy inside a carcerand container (see (17) Fig. 5) where it is protected from dimerization and from reactants by its surrounding shell (140). [Pg.75]

The work of Thiele (1939) and Zeldovich (1939) called attention to the fact that reaction rates can be influenced by diffusion in the pores of particulate catalysts. For industrial, high-performance catalysts, where reaction rates are high, the pore diffusion limitation can reduce both productivity and selectivity. The latter problem emerges because 80% of the processes for the production of basic intermediates are oxidations and hydrogenations. In these processes the reactive intermediates are the valuable products, but because of their reactivity are subject to secondary degradations. In addition both oxidations and hydrogenation are exothermic processes and inside temperature gradients further complicate secondary processes inside the pores. [Pg.24]

For these cases, the conservation statement is made around the outside of the catalyst. In steady-state, everything that is consumed or produced inside the catalyst must go through the outside boundary layer of the fluid surrounding the catalyst. In case of serious selectivity problems with a desired and reactive intermediate, the criterion should be calculated for that component. [Pg.76]

BWRs do not operate with dissolved boron like a PWR but use pure, demineralized water with a continuous water quality control system. The reactivity is controlled by the large number of control rods (>100) containing burnable neutron poisons, and by varying the flow rate through the reactor for normal, fine control. Two recirculation loops using variable speed recirculation pumps inject water into the jet pumps inside of the reactor vessel to increase the flow rate by several times over that in the recirculation loops. The steam bubble formation reduces the moderator density and... [Pg.211]

Alkynes substituted with one or two trifluoromethyl groups are also highly reactive dienophiles [9] Indeed, hexafluoro-2-butyne is used increasingly as a definitive acetylenic dienophile in "difficult Diels-Alder reactions. It was used, for example, to prepare novel inside-outside bicycloalkanes via its reaction with cir,trnns -l,3-undecadiene [74] (equation 67) and to do a tandem Diels-Alder reaction with a l,l-bis(pyrrole)methane [75] (equation 68) Indeed, its reactions with pyrrole derivatives and furan have been used in the syntheses of 3,4-bis(tri-fluoromethyl)pyrrole [76, 77] (equation 69) and ],4-bis(trifluoromethyl)benzene-2,3-oxide [78] (equation 70), respectively. [Pg.819]

Sacrificial anode systems operate without external power source. The anodes are reactive metals such as magnesium and zinc or aluminum alloys. The energy for the process is derived from the anode material. Careful design is required to match the output and lifetime of the anodes with the polarization and life-expectancy requirements of the plant. Sacrificial anode CP is used for offshore platforms, sub-sea pipelines and the inside of ballast tanks on tanker ships. [Pg.909]

A reactive polymer (RP) is simply a device to alloy different materials by changing their molecular structure inside a compounding machine. True reactive alloying induces an interaction between different phases of an incompatible mixture and assures the stability of the mixture s morphology. The concept is not new. This technology is now capable of producing thousands of new compounds to meet specific design requirements. [Pg.348]

The reactivity of alkali metals with B decreases as their atomic number increases Li reacts completely with B at 700°C, whereas with K the reaction is not complete until 1200°C, at which T the pressure of the alkali metal is ca. 20 x 10 N m . These pressures demand the use of thick-walled reaction vessels. The boron-alkali metal mixture is placed in a Mo crucible inside such a container made of Fe or Mo, depending on the reaction T. [Pg.261]

Nowadays, ultramarine-type pigments are produced synthetically. Inside the zeolite structure the highly reactive sulfur radical anions are well protected which explains the stability of the blue color over thousands of years in air. However, the species responsible for the blue color should not be confused with the sulfur radical cations responsible for the blue color of sulfur solutions in fuming sulfuric acid (oleum) and similar oxidizing mixtures... [Pg.147]

Each section consists of a reaction plate where the reaction mixture flows, surrounded by two cooling plates containing the UE. The reactants and catalyst are stored separately and put into contact at the opening of the first reaction plate. The pilot holdup is typically 1.5 1. The successive plates of the reactor can be represented as shown in Figure 12.1. Inside the reactive plate (RP), the environment of the reaction mixture is composed of PEEK. The UE flows between two stainless steel plates, the sandwich plate (SP) and the transition plate (TP). [Pg.265]

The next level is that of small catalytically active particles, with typical dimensions of between 1 and 10 nm, and inside the pores of support particles (pm range). The questions of interest are the size, shape, structure and composition of the active particles, in particular of their surfaces, and how these properties relate to catalytic reactivity. Although we will deal with heterogeneous catalysis, the anchoring of catalytic... [Pg.17]


See other pages where Inside Reactivity is mentioned: [Pg.30]    [Pg.49]    [Pg.30]    [Pg.49]    [Pg.2424]    [Pg.195]    [Pg.381]    [Pg.124]    [Pg.14]    [Pg.372]    [Pg.418]    [Pg.295]    [Pg.377]    [Pg.1289]    [Pg.2558]    [Pg.51]    [Pg.405]    [Pg.49]    [Pg.404]    [Pg.402]    [Pg.312]    [Pg.105]    [Pg.83]    [Pg.239]    [Pg.441]    [Pg.184]    [Pg.428]    [Pg.84]    [Pg.148]    [Pg.415]    [Pg.92]    [Pg.172]    [Pg.156]    [Pg.522]    [Pg.244]    [Pg.69]    [Pg.168]    [Pg.441]    [Pg.103]   


SEARCH



Inside

© 2024 chempedia.info