Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Injection polyethylene, properties

The Phillips process for the manufacture of high-density polyethylene may be adapted to produce copolymers of ethylene with small amounts of propylene or but-l-ene and copolymers of this type have been available since 1958. These soon found application in blown containers and for injection moulding. Properties of two grades of such copolymers are compared with two grades of Phillips-type homopolymer in Table 11.11. [Pg.275]

Index range from 1.25-6.12, which would be suitable for polyethylene film and injection molding applications. The polyethylene molecular weight distribution was relatively narrow as indicated by Melt Flow Ratio values (HLMI/Ml) reported between 26.0 and 33.5. The narrower MWD exhibited by the polymer samples would offer improved film and injection molding properties. [Pg.80]

In broad tonnage terms the injection moulding markets for high-density polyethylene and polypropylene are very similar. The main reasons for selecting polypropylene have been given above. In favour of HDPE is the inherently better oxidation and ultraviolet resistance. Whilst these properties may be greatly improved in polypropylene by the use of additives these may increase the cost of polypropylene compounds to beyond that which is considered economically attractive. It is for this reason that HDPE has retained a substantial part of the crate market. [Pg.266]

A further approach is used by Bayer with their polyesteramide BAK resins. A film grade, with mechanical and thermal properties similar to those of polyethylene is marketed as BAK 1095. Based on caprolactam, adipic acid and butane diol it may be considered as a nylon 6-co-polyester. An injection moulding grade, BAK 2195, with a higher melting point and faster crystallisation is referred to as a nylon 66-co-polyester and thus presumably based on hexamethylene diamine, adipic acid and butane diol. [Pg.882]

Polyesters, which are a class of engineering thermoplastics, are found in a wide variety of applications including carbonated drink bottles, fibers for synthetic fabrics, thin films for photographic films and food packaging, injection molded automotive parts, and housings for small appliances. In this chapter, we svill explore the synthesis of this class of polymers. We will also look at the typical properties and end uses for the most common of these resins, polyethylene terephthalate and polybutylene terephthalate, which are commonly known as PET and PBT, respectively. [Pg.371]

Polyesters exhibit excellent high temperature strength and electrical properties making them a good choice for many demanding applications. They also are physiologically inert allowing them to be used in food contact applications. The two common polyesters, polyethylene terephthalate and polybutylene terephthalate, are both used in injection molded products. Polyethylene terephthalate is often used in both extrusion and blow molded processes also. [Pg.381]

By far the most important plastic is polyethylene terephthalate (PET). Bottles of this material are formed in a two-stage process. So-called pre-forms are made by injection moulding and, in a second process, are then stretch-blow-moulded to produce a bottle. PET has properties surprisingly like those of glass, but it does not have the same disadvantages of weight and brittleness. [Pg.13]

Substitute for Conventional Vulcanized Rubbers, For this application, the products are processed by techniques and equipment developed for conventional thermoplastics, ie, injection molding, extrusion, etc. The S—B—S and S—EB—S polymers are preferred (small amounts of S—EP—S are also used). To obtain a satisfactory balance of properties, they must be compounded with oils, fillers, or other polymers compounding reduces costs. Compounding ingredients and their effects on properties are given in Table 8. Oils with high aromatic content should be avoided because they plasticize the polystyrene domains. Polystyrene is often used as an ingredient in S—B—S-based compounds it makes the products harder and improves their processibility. In S—EB—S-based compounds, crystalline polyolefins such as polypropylene and polyethylene are preferred. Some work has been reported on blends of liquid polysiloxanes with S—EB—S block copolymers. The products are primarily intended for medical and pharmaceutical-type applications and hardnesses as low as 5 on the Shore A scale have been reported (53). [Pg.17]

In this context, other approaches have been developed to improve the pharmacokinetic and pharmacodynamic properties of recombinant proteins in vivo. These have included the addition of polyethylene glycol to the recombinant molecules (PEGyla-tion) and the use of sustained-release delivery systems. One goal of these approaches is to achieve clinical efficacy and lower the number of administrations, possibly to single injections, and thereby increase patient compliance. In addition to improving the pharmacokinetic and pharmacodynamic profile of recombinant molecules, sustained release may also increase the biological activity of specific molecules. [Pg.4]

The optimum processing temperature for Solanyl is lower than those of synthetic plastics. The recommended temperature profile ranges from about 110 °C at the first heated zone to 170 °C at the nozzle. Solanyl has excellent flow properties enabling low wall thickness. However, the injection pressure is about 20-30% higher than needed for polyolefins. Mechanical properties are roughly in the same order of magnitude as polyethylene and polystyrene. [Pg.63]


See other pages where Injection polyethylene, properties is mentioned: [Pg.1078]    [Pg.186]    [Pg.17]    [Pg.254]    [Pg.262]    [Pg.835]    [Pg.36]    [Pg.278]    [Pg.95]    [Pg.209]    [Pg.247]    [Pg.165]    [Pg.301]    [Pg.35]    [Pg.273]    [Pg.31]    [Pg.210]    [Pg.166]    [Pg.17]    [Pg.453]    [Pg.999]    [Pg.264]    [Pg.180]    [Pg.30]    [Pg.326]    [Pg.480]    [Pg.240]    [Pg.223]    [Pg.456]    [Pg.293]    [Pg.227]    [Pg.226]    [Pg.224]    [Pg.356]    [Pg.3280]    [Pg.9]    [Pg.173]   
See also in sourсe #XX -- [ Pg.299 ]




SEARCH



Injection properties

Polyethylene injection

© 2024 chempedia.info