Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inhibitors reactions catalyzed

Polyester polyols (Scheme 4.4) are prepared by condensation polymerization of dicarboxylic acids and diols. An excess of diol ensures OH functional product, minimizing die possibility of residual acid groups which react with isocyanates to generate C02 and act as inhibitors in catalyzed urethane reactions. The reactants are heated at 200-230°C under vacuum to remove the water by-product and drive the reaction to completion. The most common coreactants include adipic... [Pg.223]

The term pseudosubstrate as used in this article will comprise sugar-related compounds that are chemically transformed by glycosidases, often forming long-lived intermediates and thereby acting as reversible inhibitors. Even in cases of weak inhibition, where the intermediate is too short-lived for chemical or physical characterization, the type of reaction catalyzed by the... [Pg.348]

E. J. Corey, E-Y. Zhang, re and si-Face-Selective Nitroal-dol Reactions Catalyzed by a Rigid Chiral Quaternary Ammonium Salt A Highly Stereoselective Synthesis of the HIV Protease Inhibitor Amprenavir (Vertex 478) , Angew. Chern. Int. Ed 1999, 38,1931-1934. [Pg.142]

The transesterification of cocaine to cocaethylene is an enzymatic reaction catalyzed by microsomal carboxylesterases and blocked by inhibitors of serine hydrolases [124][125], In Chapt. 3, we have discussed the mechanism of serine hydrolases, showing how a H20 molecule enters the catalytic cycle to hydrolyze the acylated serine residue in the active site of the enzyme. In the case of cocaine, the acyl group is the benzoylecgoninyl moiety (Fig. 7.9,d ), which undergoes esterification with ethanol according to Steps e and/ (Fig. 7.9). [Pg.412]

The overall reaction catalyzed by epoxide hydrolases is the addition of a H20 molecule to an epoxide. Alkene oxides, thus, yield diols (Fig. 10.5), whereas arene oxides yield dihydrodiols (cf. Fig. 10.8). In earlier studies, it had been postulated that epoxide hydrolases act by enhancing the nucleo-philicity of a H20 molecule and directing it to attack an epoxide, as pictured in Fig. 10.5, a [59] [60], Further evidence such as the lack of incorporation of 180 from H2180 into the substrate, the isolation of an ester intermediate, and the effects of group-selective reagents and carefully designed inhibitors led to a more-elaborate model [59][61 - 67]. As pictured in Fig. 10.5,b, nucleophilic attack of the substrate is mediated by a carboxylate group in the catalytic site to form an ester intermediate. In a second step, an activated H20... [Pg.614]

Several drugs that interfere with production ofdTMP by blocking the reaction catalyzed by thymidy-late synthetase are Inhibitors ofDNA synthesis and cell proliferation. [Pg.145]

Fig. 9. A schematic drawing of a possible mechanism for the reaction catalyzed by the pyruvate dehydrogenase complex. The three enzymes Elf E2, and E3 are located so that lipoic acid covalently linked to E2 can rotate between the active sites containing thiamine pyrophosphate (TPP) and pyruvate (Pyr) on Elt CoA on E2, and FAD on E3. Acetyl-CoA and GTP are allosteric effectors of E, and NAD+ is an inhibitor of the overall reaction. Fig. 9. A schematic drawing of a possible mechanism for the reaction catalyzed by the pyruvate dehydrogenase complex. The three enzymes Elf E2, and E3 are located so that lipoic acid covalently linked to E2 can rotate between the active sites containing thiamine pyrophosphate (TPP) and pyruvate (Pyr) on Elt CoA on E2, and FAD on E3. Acetyl-CoA and GTP are allosteric effectors of E, and NAD+ is an inhibitor of the overall reaction.
MP is converted to an inactive metabolite (6-thiouric acid) by an oxidation reaction catalyzed by xanthine oxidase, whereas 6-TG undergoes deamination. This is an important issue because the purine analog allopurinol, a potent xanthine oxidase inhibitor, is frequently used as a supportive care measure in the treatment of acute leukemias to prevent the development of hyperuricemia that often occurs with tumor cell lysis. Because allopurinol inhibits xanthine oxidase, simultaneous therapy with allopurinol and 6-MP would result in increased levels of 6-MP, thereby leading to excessive toxicity. In this setting, the dose of mercaptopurine must be reduced by 50-75%. In contrast, such an interaction does not occur with 6-TG, which can be used in full doses with allopurinol. [Pg.1175]

Reactions of the TCA cycle Enzyme that oxidatively decarboxylates pyruvate, its coenzymes, activators, and inhibitors REACTIONS OF THE TRICARBOXYLIC ACID CYCLE (p. 107) Pyruvate is oxidatively decarboxylated by pyruvate dehydrogenase complex producing acetyl CoA, which is the major fuel for the tricarboxylic acid cycle (TCA cycle). The irreversible set of reactions catalyzed by this enzyme complex requires five coenzymes thiamine pyrophosphate, lipoic acid, coenzyme A (which contains the vitamin pantothenic acid), FAD, and NAD. The reaction is activated by NAD, coenzyme A, and pyruvate, and inhibited by ATP, acetyl CoA, and NADH. [Pg.477]

Since preliminary studies showed that 6-hydroxymellein-O-methyl-transferase activity was appreciably inhibited in the presence of the reaction products, the mode of product inhibition of the enzyme was studied in detail in order to understand the regulatory mechanism of in vivo methyltransfer. It is well known that S-adenosyl-Z.-homocysteine (SAH), which is a common product of many O-methyltransferases that use SAM as methyl donor, is usually a potent inhibitor of such enzymes. In the 6-hydroxymellein-Omethyltransferase catalyzing reaction another product of this enzyme, 6-methoxymellein, has pronounced inhibitory activity, in addition to SAH. Since the specific product of the transferase reaction, 6-methoxymellein, is capable of inhibiting transferase activity [88], this observation suggests that activity of the transferase is specifically regulated in response to increases in cellular concentrations of its reaction products in carrot cells. It has been also found that 6-methoxymellein inhibits transferase activity with respect not only to 6-hydroxymellein but also to SAM, competitively. This competitive inhibition was also found in SAH as a function of the co-substrates of the enzyme [89]. It follows that the reaction catalyzed by 6-hydroxymellein-O-methyltransferase proceeds by a sequential bireactant mechanism in which the entry of the co-substrates to form the enzyme-substrate complexes and the release of the co-products to generate free enzyme take place in random order [Fig. (7)]. This result also implies that 6-methoxymellein and SAH have to associate with the free transferase protein to exhibit their inhibitory activities, and cannot work as the inhibitors after the enzyme forms complexes with the the substrate. If, therefore, 6-hydroxymellein-O-methyltransferase activity is controlled in vivo by its specific product 6-methoxymellein, this compound should... [Pg.507]

Many years ago Meister s group (96-101) synthesized of a number of inhibitors or substrate analogs that would mimic the intermediates in the proposed pathway of the reactions catalyzed by glutamine synthetase. Two of these are listed below, along with the structures for substrates and two alleged intermediates. [Pg.355]

Another group of inhibitors prevents nucleotide biosynthesis indirectly by depleting the level of intracellular tetrahydrofolate derivatives. Sulfonamides are structural analogs of p-aminobenzoic acid (fig. 23.19), and they competitively inhibit the bacterial biosynthesis of folic acid at a step in which p-aminobenzoic acid is incorporated into folic acid. Sulfonamides are widely used in medicine because they inhibit growth of many bacteria. When cultures of susceptible bacteria are treated with sulfonamides, they accumulate 4-carboxamide-5-aminoimidazole in the medium, because of a lack of 10-formyltetrahydrofolate for the penultimate step in the pathway to IMP (see fig. 23.10). Methotrexate, and a number of related compounds inhibit the reduction of dihydrofolate to tetrahydrofolate, a reaction catalyzed by dihydrofolate reductase. These inhibitors are structural analogs of folic acid (see fig. 23.19) and bind at the catalytic site of dihydrofolate reductase, an enzyme catalyzing one of the steps in the cycle of reactions involved in thymidylate synthesis (see fig. 23.16). These inhibitors therefore prevent synthesis of thymidylate in replicating... [Pg.551]

Scheme 2.2 Examples of reactions catalyzed by and RNA by the protein AlkB [54] (R = sugar al Scheme 2.2 Examples of reactions catalyzed by and RNA by the protein AlkB [54] (R = sugar al<C-dependent enzymes showing the versatility phosphate backbone) (c) cyclization and of this type of proteins (a) hydroxylation of desaturation reaction during the biosynthesis of taurine by taurine dioxygenase (TauD) [53] the p-lactamase inhibitor clavulanic acid by (b) repair of 1-methyladeninium lesions in DNA clavaminate synthase (CAS) [55].
The extensive studies on substrate and inhibitor specificity, on kinetics of hydrolysis, and on the influence of pH variations on the reactions catalyzed by cholinesterases have given very instructive information on the structure of the active surface and the mechanism of enzymatic hydrolysis. The conclusions reached in the various chapters of the present dis-... [Pg.161]


See other pages where Inhibitors reactions catalyzed is mentioned: [Pg.693]    [Pg.125]    [Pg.247]    [Pg.297]    [Pg.84]    [Pg.88]    [Pg.200]    [Pg.203]    [Pg.345]    [Pg.736]    [Pg.156]    [Pg.57]    [Pg.349]    [Pg.132]    [Pg.274]    [Pg.36]    [Pg.200]    [Pg.347]    [Pg.66]    [Pg.189]    [Pg.190]    [Pg.242]    [Pg.920]    [Pg.962]    [Pg.196]    [Pg.737]    [Pg.239]    [Pg.707]    [Pg.169]    [Pg.8]    [Pg.160]    [Pg.126]    [Pg.384]    [Pg.396]    [Pg.255]   


SEARCH



Reaction inhibitors

© 2024 chempedia.info