Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy selection rules

The complexity of Raman spectra for polymers is reduced as with infrared spectra because vibrations of the same type superimpose. In addition, as with infrared spectroscopy, selection rules aid in determining which molecular vibrations are active. However, the criterion for Raman aetivity is a change in bond polarizability with molecular vibration or rotation in contrast to the infrared criterion of a change in dipole moment (Figure 6.6). This means that, for molecules such as carbon dioxide that show both a change in dipole moment and a change in polarizability,... [Pg.297]

Raman spectroscopy can in principle be applied to this problem in much the same manner as infrared spectroscopy. The primary difference is that the selection rules are not the same as for the infrared. In a number of molecules, frequencies have been assigned to combinations or overtones of the fundamental frequency of the... [Pg.374]

For comparison the selection rule for infrared spectroscopy according to both classical and quantum mechanics may be stated ... [Pg.298]

It has long been realised that infrared (IR) spectroscopy would be an ideal tool if applied in situ since it can provide information on molecular composition and symmetry, bond lengths and force constants. In addition, it can be used to determine the orientation of adsorbed species by means of the surface selection rule described below. However, IR spectroscopy does not possess the spatial resolution of STM or STS, though it does supply the simplest means of obtaining the spatially averaged molecular information. [Pg.95]

The three most commonly applied external reflectance techniques can be considered in terms of the means employed to overcome the sensitivity problem. Both electrically modulated infrared spectroscopy (EMIRS) and in situ FTIR use potential modulation while polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) takes advantage of the surface selection rule to enhance surface sensitivity. [Pg.103]

A second, independent spectroscopic proof of the identity of 4 as rans-[Mo(N2)2(weso-prP4) was provided by vibrational spectroscopy. The comparison of the infrared and Raman spectrum (Fig. 7) shows the existence of two N-N vibrations, a symmetric combination at 2044 cm-1 and an antisymmetric combination at 1964 cm-1, indicating the coordination of two dinitrogen ligands. In the presence of a center of inversion the symmetric combination is Raman-allowed and the antisymmetric combination IR allowed. The intensities of vs and vaK as shown in Fig. 2 clearly reflect these selection rules. Moreover, these findings fully agree with results obtained in studies of other Mo(0) bis(dinitrogen)... [Pg.390]

The dipole and polarization selection rules of microwave and infrared spectroscopy place a restriction on the utility of these techniques in the study of molecular structure. However, there are complementary techniques that can be used to obtain rotational and vibrational spectrum for many other molecules as well. The most useful is Raman spectroscopy. [Pg.283]

As in infrared spectroscopy, not all vibrations are observable. A vibration is Raman active if it changes the polarizability of the molecule. This requires in general that the molecule changes its shape. For example, the vibration of a hypothetical spherical molecule between the extremes of a disk-shaped and a cigar-shaped ellipsoid would be Raman active. We recall that the selection rule for infrared spectroscopy was that a dipole moment must change during the vibration. As a consequence the stretch vibrations of for example H2 (4160.2 cm"1), N2 (2330.7 cm-1) and 02 (1554.7 cm"1) are observed in Raman spectroscopy but not in infrared. The two techniques thus complement each other, in particular for highly symmetrical molecules. [Pg.234]

Polymer films were produced by surface catalysis on clean Ni(100) and Ni(lll) single crystals in a standard UHV vacuum system H2.131. The surfaces were atomically clean as determined from low energy electron diffraction (LEED) and Auger electron spectroscopy (AES). Monomer was adsorbed on the nickel surfaces circa 150 K and reaction was induced by raising the temperature. Surface species were characterized by temperature programmed reaction (TPR), reflection infrared spectroscopy, and AES. Molecular orientations were inferred from the surface dipole selection rule of reflection infrared spectroscopy. The selection rule indicates that only molecular vibrations with a dynamic dipole normal to the surface will be infrared active [14.], thus for aromatic molecules the absence of a C=C stretch or a ring vibration mode indicates the ring must be parallel the surface. [Pg.84]

Some characteristics of, and comparisons between, surface-enhanced Raman spectroscopy (SERS) and infrared reflection-absorption spectroscopy (IRRAS) for examining reactive as well as stable electrochemical adsorbates are illustrated by means of selected recent results from our laboratory. The differences in vibrational selection rules for surface Raman and infrared spectroscopy are discussed for the case of azide adsorbed on silver, and used to distinguish between "flat" and "end-on" surface orientations. Vibrational band intensity-coverage relationships are briefly considered for some other systems that are unlikely to involve coverage-induced reorientation. [Pg.303]

The authors use some arguments to rule out the formate intermediate before proceeding to the discussion regarding the redox mechanism. The basis was not the activation energy barrier for OCOH formation, as it is quite low relative to other possible pathways. They rule out the OCOH as an intermediate on the basis of its proposed decomposition selectivity, which they indicate will always preferentially decompose back to CO and OH. And the isomerization to a true formate species (i.e., with a C-H bond) they indicate cannot occur by reacting OH on Cu(110) with CO. Yet intense formate bands have been observed by infrared spectroscopy upon... [Pg.205]

The high sensitivity of tunneling spectroscopy and absence of strong selection rules allows infrared and Raman active modes to be observed for a monolayer or less of adsorbed molecules on metal supported alumina. Because tunneling spectroscopy includes problems with the top metal electrode, cryogenic temperatures and low intensity of some vibrations, model catalysts of evaporated metals have been studied with CO and acetylene as the reactive small molecules. Reactions of these molecules on rhodium and palladium have been studied and illustrate the potential of tunneling spectroscopy for modeling reactions on catalyst surfaces,... [Pg.429]

Infrared, Raman, microwave, and double resonance techniques turn out to offer nicely complementary tools, which usually can and have to be complemented by quantum chemical calculations. In both experiment and theory, progress over the last 10 years has been enormous. The relationship between theory and experiment is symbiotic, as the elementary systems represent benchmarks for rigorous quantum treatments of clear-cut observables. Even the simplest cases such as methanol dimer still present challenges, which can only be met by high-level electron correlation and nuclear motion approaches in many dimensions. On the experimental side, infrared spectroscopy is most powerful for the O—H stretching dynamics, whereas double resonance techniques offer selectivity and Raman scattering profits from other selection rules. A few challenges for accurate theoretical treatments in this field are listed in Table I. [Pg.41]

An important consequence of the presence of the metal surface is the so-called infrared selection rule. If the metal is a good conductor the electric field parallel to the surface is screened out and hence it is only the p-component (normal to the surface) of the external field that is able to excite vibrational modes. In other words, it is only possible to excite a vibrational mode that has a nonvanishing component of its dynamical dipole moment normal to the surface. This has the important implication that one can obtain information by infrared spectroscopy about the orientation of a molecule and definitely decide if a mode has its dynamical dipole moment parallel with the surface (and hence is undetectable in the infrared spectra) or not. This strong polarization dependence must also be considered if one wishes to use Eq. (1) as an independent way of determining ft. It is necessary to put a polarizer in the incident beam and use optically passive components (which means polycrystalline windows and mirror optics) to avoid serious errors. With these precautions we have obtained pretty good agreement for the value of n determined from Eq. (1) and by independent means as will be discussed in section 3.2. [Pg.3]

The differences in selection rules between Raman and infrared spectroscopy define the ideal situations for each. Raman spectroscopy performs well on compounds with double or triple bonds, different isomers, sulfur-containing and symmetric species. The Raman spectrum of water is extremely weak so direct measurements of aqueous systems are easy to do. Polar solvents also typically have weak Raman spectra, enabling direct measurement of samples in these solvents. Some rough rules to predict the relative strength of Raman intensity from certain vibrations are [7] ... [Pg.197]

Raman spectroscopy Is a form of vibrational spectroscopy which, like Infrared spectroscopy. Is sensitive to transitions between different vibrational energy levels in a molecule (1). It differs from Infrared spectroscopy In that Information Is derived from a light scattering rather than a direct absorption process. Furthermore, different selection rules govern the Intensity of the respective vibrational modes. Infrared absorptions are observed for vibrational modes which change the permanent dipole moment of the... [Pg.49]

Both infrared and Raman spectra are concerned with measuring molecular vibration and rotational energy changes. However, the selection rules for Raman spectroscopy are very different from those of infrared - a change of polarisability... [Pg.254]

The selection rule for Raman spectroscopy requires a change in the induced dipole moment or polarizability of the molecule, and so it is a complementary technique to infrared which requires a change in the permanent dipole moment. For molecules having a center of inversion, all Raman-active bands are infrared inactive and vice versa. As the symmetry of the molecule is lowered, the coincidences between Raman-active and infrared-... [Pg.46]

Both infrared (IR) and Raman spectroscopy have selection rules based on the symmetry of the molecule. Any molecular vibration that results in a change of dipole moment is infrared active. For a vibration to be Raman active, there must be a change of polarizability of the molecule as the transition occurs. It is thus possible to determine which modes will be IR active, Raman active, both, or neither from the symmetry of the molecule (see Chapter 3). In general, these two modes of spectroscopy are complementary specifically, if a molecule has a center of symmetry, no [R active vibration is also Raman active. [Pg.666]


See other pages where Infrared spectroscopy selection rules is mentioned: [Pg.208]    [Pg.208]    [Pg.429]    [Pg.444]    [Pg.446]    [Pg.259]    [Pg.345]    [Pg.347]    [Pg.350]    [Pg.468]    [Pg.191]    [Pg.203]    [Pg.219]    [Pg.225]    [Pg.232]    [Pg.243]    [Pg.323]    [Pg.338]    [Pg.6]    [Pg.68]    [Pg.22]    [Pg.228]    [Pg.111]    [Pg.31]    [Pg.41]    [Pg.181]    [Pg.230]   


SEARCH



Infrared rule

Infrared selection rule

Selection rules

Spectroscopy selection rules

© 2024 chempedia.info