Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared radiation intensity

Quack M 1982 Reaction dynamics and statistical mechanics of the preparation of highly excited states by intense infrared radiation Adv. Chem. Rhys. 50 395-473... [Pg.1084]

In absorption spectroscopy a beam of electromagnetic radiation passes through a sample. Much of the radiation is transmitted without a loss in intensity. At selected frequencies, however, the radiation s intensity is attenuated. This process of attenuation is called absorption. Two general requirements must be met if an analyte is to absorb electromagnetic radiation. The first requirement is that there must be a mechanism by which the radiation s electric field or magnetic field interacts with the analyte. For ultraviolet and visible radiation, this interaction involves the electronic energy of valence electrons. A chemical bond s vibrational energy is altered by the absorbance of infrared radiation. A more detailed treatment of this interaction, and its importance in deter-... [Pg.380]

Infrared laser lines involving. .. 2p 5s —. .. 2p 4p transitions in the 3.39 pm region are not particularly usefiil. However, they do cause some problems in a 632.8 nm laser because they deplete the populations of the. ., 2p 5s states and decrease the 632.8 nm intensity. The 3.39 pm transitions are suppressed by using multilayer cavity mirrors designed specifically for the 632.8 nm wavelength or by placing a prism in the cavity orientated so as to deflect the infrared radiation out of the cavity. [Pg.353]

The vibrational motions of the chemically bound constituents of matter have fre-quencies in the infrared regime. The oscillations induced by certain vibrational modes provide a means for matter to couple with an impinging beam of infrared electromagnetic radiation and to exchange energy with it when the frequencies are in resonance. In the infrared experiment, the intensity of a beam of infrared radiation is measured before (Iq) and after (7) it interacts with the sample as a function of light frequency, w[. A plot of I/Iq versus frequency is the infrared spectrum. The identities, surrounding environments, and concentrations of the chemical bonds that are present can be determined. [Pg.32]

The goal of the basic infrared experiment is to determine changes in the intensity of a beam of infrared radiation as a function of wavelength or frequency (2.5-50 im or 4000—200 cm respectively) after it interacts with the sample. The centerpiece of most equipment configurations is the infrared spectrophotometer. Its function is to disperse the light from a broadband infrared source and to measure its intensity at each frequency. The ratio of the intensity before and after the light interacts with the sample is determined. The plot of this ratio versus frequency is the infrared spectrum. [Pg.417]

A powerful characteristic of RAIR spectroscopy is that the technique can be used to determine the orientation of surface species. The reason for this is as follows. When parallel polarized infrared radiation is specularly reflected off of a substrate at a large angle of incidence, the incident and reflected waves combine to form a standing wave that has its electric field vector (E) perpendicular to the substrate surface. Since the intensity of an infrared absorption band is proportional to / ( M), where M is the transition moment , it can be seen that the intensity of a band is maximum when E and M are parallel (i.e., both perpendicular to the surface). / is a minimum when M is parallel to the surface (as stated above, E is always perpendicular to the surface in RAIR spectroscopy). [Pg.251]

An example of an absorption spectrum—that of ethanol exposed to infrared radiation—is shown in Figure 12.12. The horizontal axis records the wavelength, and the vertical axis records the intensity of the various energy absorptions in percent transmittance. The baseline corresponding to 0% absorption (or 100% transmittance) runs along the top of the chart, so a downward spike means that energy absorption has occurred at that wavelength. [Pg.420]

As with electronic spectra, the use of infrared spectra for quantitative determinations depends upon the measurement of the intensity of either the transmission or absorption of the infrared radiation at a specific wavelength, usually the maximum of a strong, sharp, narrow, well-resolved absorption band. Most organic compounds will possess several peaks in their spectra which satisfy these criteria and which can be used so long as there is no substantial overlap with the absorption peaks from other substances in the sample matrix. [Pg.751]

The intensity of infrared radiation at various wavelengths that would be lost from Earth in the absence of greenhouse gases is shown by the smooth line. The jagged line is the intensity of the radiation actually emitted. The maximum wavelength of radiation absorbed by each greenhouse gas is indicated. [Pg.730]

A diagram of a typical interferometer (Michelson type) is shown in Figure 7.8. It consists of fixed and moving front-surface plane mirrors (A and B) and a beamsplitter. Collimated infrared radiation from the source incident on the beamsplitter is divided into two beams of equal intensity that pass to the fixed and moving mirrors respectively. Each is reflected back on itself, recombining at the beamsplitter from where they are directed through the sample compartment and onto the detector. Small... [Pg.280]

Black body radiators are used as sources of infrared radiation in the range 2-15 yum, e.g. the Nemst glower, which consists of a hollow rod made of the fused oxides of zirconium, yttrium and thorium. For use it is preheated and, when a voltage is applied, it emits intense continuous infrared radiation with very little visible radiation. [Pg.61]

An infrared spectrum can be obtained for a sample of an organic compound regardless of its physical state (solid, liquid, gas or dissolved in a solvent). Infrared radiation is passed through the sample in the spectrometer. Some wavelengths are absorbed, causing bond vibrations within the molecules. The transmitted radiation then passes to a detector where the intensity at different wavelengths is measured. An Infrared spectrum, like that shown in the diagram, is obtained. [Pg.75]

At low pressure, the only interactions of the ion with its surroundings are through the exchange of photons with the surrounding walls. This is described by the three processes of absorption, induced emission, and spontaneous emission (whose rates are related by the Einstein coefficient equations). In the circumstances of interest here, the radiation illuminating the ions is the blackbody spectrum at the temperature of the surrounding walls, whose intensity and spectral distribution are given by the Planck blackbody formula. At ordinary temperatures, this is almost entirely infrared radiation, and near room temperature the most intense radiation is near 1000 cm". ... [Pg.111]


See other pages where Infrared radiation intensity is mentioned: [Pg.260]    [Pg.260]    [Pg.394]    [Pg.195]    [Pg.450]    [Pg.250]    [Pg.799]    [Pg.747]    [Pg.216]    [Pg.242]    [Pg.25]    [Pg.16]    [Pg.1007]    [Pg.59]    [Pg.144]    [Pg.151]    [Pg.172]    [Pg.283]    [Pg.338]    [Pg.347]    [Pg.349]    [Pg.274]    [Pg.45]    [Pg.324]    [Pg.150]    [Pg.67]    [Pg.255]    [Pg.72]    [Pg.76]    [Pg.179]    [Pg.34]    [Pg.765]    [Pg.799]    [Pg.359]    [Pg.242]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Infrared intensity

Infrared radiation

Intense infrared

Radiation intensity

© 2024 chempedia.info