Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared extraction

Combustion-infrared, persulfate-ultraviolet oxidation, wet oxidation Adsorption-pyrolysis-titrimetric method Partition-gravimetric, partition-infrared, extraction Extraction (total phenols), distillation (volatiles), colorimetry Separation by sublation, methylene blue active substances (MBAS), anionics and cobalt thiocyanate active susbstances (CTAS), nonionic surfactants Chromatographic, distillation... [Pg.5060]

To ensure disposal water quality is in line with regulatory requirements (usually 40 ppm), the oil content in water is monitored by solvent extraction and infrared spectroscopy. The specification of 40 ppm refers to an oil in water content typically averaged over a one month period. [Pg.249]

EVA descriptors were proposed by Ferguson et al. [Ah, 47]. The EVA descriptor (EigenVAlue) extracts structural information from infrared spectra. The eigenva-... [Pg.427]

The environmental appHcations of infrared spectrometry are many and varied. Many appHcations at industrial sites are analogous to those for on-line process analysis waste streams and recycling processes can be monitored in the same way. Commercial infrared stack-gas monitors are based on either an extractive probe attached to a long-path gas ceU or an open-path (across stack) configuration (69). Stack plume and flare monitoring can be done externally... [Pg.201]

High quahty SAMs of alkyltrichlorosilane derivatives are not simple to produce, mainly because of the need to carefully control the amount of water in solution (126,143,144). Whereas incomplete monolayers are formed in the absence of water (127,128), excess water results in facile polymerization in solution and polysiloxane deposition of the surface (133). Extraction of surface moisture, followed by OTS hydrolysis and subsequent surface adsorption, may be the mechanism of SAM formation (145). A moisture quantity of 0.15 mg/100 mL solvent has been suggested as the optimum condition for the formation of closely packed monolayers. X-ray photoelectron spectroscopy (xps) studies confirm the complete surface reaction of the —SiCl groups, upon the formation of a complete SAM (146). Infrared spectroscopy has been used to provide direct evidence for the hiU hydrolysis of methylchlorosilanes to methylsdanoles at the soHd/gas interface, by surface water on a hydrated siUca (147). [Pg.537]

A predictive macromolecular network decomposition model for coal conversion based on results of analytical measurements has been developed called the functional group, depolymerization, vaporization, cross-linking (EG-DVC) model (77). Data are obtained on weight loss on heating (thermogravimetry) and analysis of the evolved species by Eourier transform infrared spectrometry. Separate experimental data on solvent sweUing, solvent extraction, and Gieseler plastometry are also used in the model. [Pg.226]

EPA Method 6C is the instrumental analyzer procedure used to determine sulfur dioxide emissions from stationaiy sources (see Fig. 25-30). An integrated continuous gas sample is extracted from the test location, and a portion of the sample is conveyed to an instrumental analyzer for determination of SO9 gas concentration using an ultraviolet ( UV), nondispersive infrared (NDIR), or fluorescence analyzer. The sample gas is conditioned prior to introduction to the gas analyzer by removing particulate matter and moisture. Sampling is conducted at a constant rate for the entire test rim. [Pg.2200]

When the operating conditions are uniform and steady (there are no fluctuations in flow rate or in concentration of CO in the gas stream), the continuous sampling method can be used. A sampling probe is placed in the stack at any location, preferably near the center. The sample is extracted at a constant sampling rate. As the gas stream passes through the sampling apparatus, any moisture or carbon dioxide in the sample gas stream is removed. The CO concentration is then measured by a nondispersive infrared analyzer, which gives direct readouts of CO concentrations. [Pg.2201]

A critical study has been carried out in order to evaluate the capabilities of Near Infrared spectroscopy for the analysis of commercial pesticide formulations using transmittance measurements. In this sense, it has been evaluated the determination of active ingredients in agrochemical formulations after extraction with an appropriate solvent. [Pg.141]

The principles of infrared spectroscopy can be exploited to extract information on the chemical bonding of an extremely wide variety of materials. The greatest strength of the technique is as a nondestructive, bulk probe of glassy and amor-... [Pg.425]

Estrone methyl ether (100 g, 0.35 mole) is mixed with 100 ml of absolute ethanol, 100 ml of benzene and 200 ml of triethyl orthoformate. Concentrated sulfuric acid (1.55 ml) is added and the mixture is stirred at room temperature for 2 hr. The mixture is then made alkaline by the addition of excess tetra-methylguanidine (ca. 4 ml) and the organic solvents are removed. The residue is dissolved in heptane and the solution is filtered through Celite to prevent emulsions in the following extraction. The solution is then washed threetimes with 500 ml of 10 % sodium hydroxide solution in methanol to remove excess triethyl orthoformate, which would interfere with the Birch reduction solvent system. The heptane solution is dried over sodium sulfate and the solvent is removed. The residue is satisfactory for the Birch reduction step. Infrared analysis shows that the material contains 1.3-1.5% of estrone methyl ether. The pure ketal may be obtained by crystallization from anhydrous ethanol, mp 99-100°. Acidification of the methanolic sodium hydroxide washes affords 10-12 g of recovered estrone methyl ether. [Pg.51]

A mixture consisting of 0.69 g (10.5 mmoles) of zinc-copper couple, 12 ml of dry ether, and a small crystal of iodine, is stirred with a magnetic stirrer and 2.34 g (0.7 ml, 8.75 mmoles) of methylene iodide is added. The mixture is warmed with an infrared lamp to initiate the reaction which is allowed to proceed for 30 min in a water bath at 35°. A solution of 0.97 g (2.5 mmoles) of cholest-4-en-3/ -ol in 7 ml of dry ether is added over a period of 20 min, and the mixture is stirred for an additional hr at 40°. The reaction mixture is cooled with an ice bath and diluted with a saturated solution of magnesium chloride. The supernatant is decanted from the precipitate, and the precipitate is washed twice with ether. The combined ether extracts are washed with saturated sodium chloride solution and dried over anhydrous sodium sulfate. The solvent is removed under reduced pressure and the residue is chromatographed immediately on 50 g of alumina (activity III). Elution with benzene gives 0.62 g (62%) of crystalline 4/5,5/5-methylene-5 -cholestan-3/5-ol. Recrystallization from acetone gives material of mp 94-95° Hd -10°. [Pg.112]

Multidimensional gas chromatography has also been used in the qualitative analysis of contaminated environmental extracts by using spectral detection techniques Such as infrared (IR) spectroscopy and mass spectrometry (MS) (20). These techniques produce the most reliable identification only when they are dealing with pure substances this means that the chromatographic process should avoid overlapping of the peaks. [Pg.337]

K. A. Rrock and C. L. Wilkins, Qualitative analysis of contaminated environmental extracts by multidimensional gas cliromatography with infrared and mass specti al detection (MDGC-IR-MS) , pp. 167-178, copyright 1996, with permission from Elsevier Science. [Pg.341]

After washing the combined extracts with ammonium chloride solution and water and working up in the usual way a white solid (IV) is obtained which after one recrystalli2ation from aqueous methanol has MP 242° to 243°C. The infrared spectrum of this compound indi-... [Pg.912]

During the reaction, protons are extracted from the brucite lattice. Infrared spectra [24, 25, 31] show that during charge the sharp hydroxyl band at 3644 cm" disappears. This absorption is replaced by a diffuse band at 3450 cm"1. The spectra indicate a hydrogen-bonded structure for ft-NiOOH with no free hydroxyl groups. ft-NiOOH probably has some adsorbed and absorbed water. However, TGA data... [Pg.142]

Abscisin II is a plant hormone which accelerates (in interaction with other factors) the abscission of young fruit of cotton. It can accelerate leaf senescence and abscission, inhibit flowering, and induce dormancy. It has no activity as an auxin or a gibberellin but counteracts the action of these hormones. Abscisin II was isolated from the acid fraction of an acetone extract by chromatographic procedures guided by an abscission bioassay. Its structure was determined from elemental analysis, mass spectrum, and infrared, ultraviolet, and nuclear magnetic resonance spectra. Comparisons of these with relevant spectra of isophorone and sorbic acid derivatives confirmed that abscisin II is 3-methyl-5-(1-hydroxy-4-oxo-2, 6, 6-trimethyl-2-cyclohexen-l-yl)-c s, trans-2, 4-pen-tadienoic acid. This carbon skeleton is shown to be unique among the known sesquiterpenes. [Pg.101]

Propanone, l-chloro-l,l,3,3,3-pentafluoro-] (b.p. 7.8° available from PCR, Inc. or Allied Chemical Corp.) are combined in a flask fitted with a dry ice condenser and a magnetic stirring bar. The refluxing mixture is stirred for 4-0 hours and then allowed to warm gradually to room temperature. The contents of the flask are extracted three times with anhydrous ether, and the combined extracts are distilled at atmospheric pressure. After the ether has been removed, continued distillation gives 22.8-28.5 g. (55-69%) of l,l,l-trichloro-3,3,3-trifluoroacetone, b.p. 83.5-84.5°, infrared (film) 1790 cm. - This compound is stored at room temperature in a tightly stoppered bottle. In the absence of reliable toxicity data, it should be handled with normal precautions. [Pg.124]

Following the same procedures described in the above-mentioned study, additional extractive data were obtained for the epoxy phenolic enamel that was irradiated at 4.7-7.1 Mrad at 25 and — 30 °C in the presence of distilled water, 3% acetic acid, and n-heptane. The changes in the amount of extractives resulting from the irradiation treatment are shown in Table IX. In the case of the water and acetic acid extractives, there was no change in either the chloroform-soluble fractions or the chloroform-insoluble fractions. In the case of the n-heptane extractives, the amount of extractives decreased when the irradiation temperature was reduced from +25 to — 30°C. Infrared spectra of the chloroform-soluble residues from the water and acetic acid extractives of the unirradiated and irradiated enamel were identical to the chloroform-soluble residues from the solvent blanks. In other words, the epoxy phenolic... [Pg.39]

The thin-layer technique (CA 60, 6691) utilizes aliquots of proplnt ether extract (I) and the ether soln (II) of a known mixt. II consists of nitrates of glycerol and glycol, di-Bu or di-Et phthalates, Et or Me centralites, DNT, and diphenylamine. The chromatoplates are made of 85 15 silica gel and plaster of Paris. These plates, containing spots of I and 11, are developed with 1 1 C6H6-petroleum ether, then sprayed with specific detectors by color. The method is much quicker and easier than chemical analysis and simpler than infrared spectroscopy and column chromatography... [Pg.945]

Infrared spectral studies of polymeric sulfur are scarce and mainly the overtone region was studied [142, 180]. In the range of the stretching vibrations, two bands at ca. 460 cm (strong) and ca. 423 cm (medium) were reported for Crystex after extraction of the soluble ring fraction by CS2 [180]. The results of the literature are summarized in Table 12. [Pg.80]


See other pages where Infrared extraction is mentioned: [Pg.398]    [Pg.398]    [Pg.2444]    [Pg.155]    [Pg.517]    [Pg.486]    [Pg.233]    [Pg.275]    [Pg.417]    [Pg.218]    [Pg.220]    [Pg.226]    [Pg.387]    [Pg.1]    [Pg.98]    [Pg.487]    [Pg.913]    [Pg.1014]    [Pg.1014]    [Pg.42]    [Pg.908]    [Pg.32]    [Pg.110]    [Pg.118]    [Pg.30]    [Pg.435]    [Pg.277]    [Pg.165]    [Pg.118]    [Pg.134]    [Pg.139]   
See also in sourсe #XX -- [ Pg.456 ]




SEARCH



Delayed-extraction infrared laser desorption

Fourier transform-infrared analysis solvent extractables

Infrared polymer extracts

Solvent Extraction - Infrared Spectrometry

© 2024 chempedia.info