Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inductive coupled plasma mass spectrometry ICP-MS

If a sample solution is introduced into the center of the plasma, the constituent molecules are bombarded by the energetic atoms, ions, electrons, and even photons from the plasma itself. Under these vigorous conditions, sample molecules are both ionized and fragmented repeatedly until only their constituent elemental atoms or ions survive. The ions are drawn off into a mass analyzer for measurement of abundances and mJz values. Plasma torches provide a powerful method for introducing and ionizing a wide range of sample types into a mass spectrometer (inductively coupled plasma mass spectrometry, ICP/MS). [Pg.87]

To examine a sample by inductively coupled plasma mass spectrometry (ICP/MS) or inductively coupled plasma atomic-emission spectroscopy (ICP/AES) the sample must be transported into the flame of a plasma torch. Once in the flame, sample molecules are literally ripped apart to form ions of their constituent elements. These fragmentation and ionization processes are described in Chapters 6 and 14. To introduce samples into the center of the (plasma) flame, they must be transported there as gases, as finely dispersed droplets of a solution, or as fine particulate matter. The various methods of sample introduction are described here in three parts — A, B, and C Chapters 15, 16, and 17 — to cover gases, solutions (liquids), and solids. Some types of sample inlets are multipurpose and can be used with gases and liquids or with liquids and solids, but others have been designed specifically for only one kind of analysis. However, the principles governing the operation of inlet systems fall into a small number of categories. This chapter discusses specifically substances that are normally liquids at ambient temperatures. This sort of inlet is the commonest in analytical work. [Pg.103]

To measure trace metals to the levels required in the guidelines involves the use of state-of-the-art instmmentation such as inductively coupled plasma/mass spectrometry (icp/ms). [Pg.447]

The complex of the following destmctive and nondestmctive analytical methods was used for studying the composition of sponges inductively coupled plasma mass-spectrometry (ICP-MS), X-ray fluorescence (XRF), electron probe microanalysis (EPMA), and atomic absorption spectrometry (AAS). Techniques of sample preparation were developed for each method and their metrological characteristics were defined. Relative standard deviations for all the elements did not exceed 0.25 within detection limit. The accuracy of techniques elaborated was checked with the method of additions and control methods of analysis. [Pg.223]

Inductively coupled plasma-mass spectrometry (ICP-MS) is a multielement analytical method with detection limits which are, for many trace elements, including the rare earth elements, better than those of most conventional techniques. With increasing availability of ICP-MS instalments in geological laboratories this method has been established as the most prominent technique for the determination of a large number of minor and trace elements in geological samples. [Pg.454]

Chudzinska, M. and Baralkiewicz, D. (2010). Estimation of honey authenticity by multielements characteristics using inductively coupled plasma-mass spectrometry (ICP-MS) combined with chemometrics. Food Chem. Toxicol. 48, 284-290. [Pg.125]

In modern times, most analyses are performed on an analytical instrument for, e.g., gas chromatography (GC), high-performance liquid chromatography (HPLC), ultra-violet/visible (UV) or infrared (IR) spectrophotometry, atomic absorption spectrometry, inductively coupled plasma mass spectrometry (ICP-MS), mass spectrometry. Each of these instruments has a limitation on the amount of an analyte that they can detect. This limitation can be expressed as the IDL, which may be defined as the smallest amount of an analyte that can be reliably detected or differentiated from the background on an instrument. [Pg.63]

There is a branch of MS specially designed for dealing with the analysis of inorganic materials.[21,22] Different specific ionization techniques, such as inductively coupled plasma mass spectrometry (ICP-MS),[23] glow discharge mass spectrometry (GD-MS)[24] and secondary ion mass spectrometry (SIMS),[25] are available and they are widely used in cultural heritage applications. Their description is beyond the scope of this chapter. [Pg.53]

Detailed examination of another madder preparation proved that the sample can be premordanted with alum. [ 19] After hydrolysis performed with hydrochloric acid and extraction with M-amyl alcohol, only four colourants are found alizarin, purpurin, and probably lucidin and ruberythric acid. Additionally, signals at m/z 525 and 539 are observed in the mass spectrum. Analysis of the preparation by inductively coupled plasma mass spectrometry (ICP MS) shows that aluminium and calcium are the main inorganic components of the sample. This is why it was suggested that the signal at m/z 539 can be attributed to the complex of aluminium with alizarin, and the second one, observed at m/z 525, to an aluminium-calcium cluster. [Pg.372]

Atomic techniques such as atomic absorption spectrometry (AA), inductively coupled plasma-optical emission spectrometry (ICP-OES), and inductively coupled plasma-mass spectrometry (ICP-MS), have been widely used in the pharmaceutical industry for metal analysis.190-192 A content uniformity analysis of a calcium salt API tablet formulation by ICP-AES exhibited significantly improved efficiency and fast analysis time (1 min per sample) compared to an HPLC method.193... [Pg.268]

Soil samples were sieved to two size fractions <63 pm and <2 mm. Samples were analyzed for multi-element geochemistry by inductively coupled plasma/mass spectrometry (ICP/MS) following a near total 4-acid digestion. [Pg.173]

Inductively coupled plasma-mass spectrometry (ICP-MS), 25 60 of archaeological materials, 5 742, 743 in thorium analysis, 24 774, 775 Inductively coupled plasma technique,... [Pg.470]

Holmes, L.J., Robinson, V. J., Makinson, P. R. and Livens, F. R. (1995). Multi-element determination in complex matrices by inductively coupled plasma-mass spectrometry (ICP-MS). Science of the Total Environment 173 345-350. [Pg.369]

The primary and immediate need is for a trace metal reference material, but a certified reference material would provide even greater benefits. A technique based on isotope dilution with detection by inductively-coupled plasma mass spectrometry (ICP-MS) (Wu and Boyle, 1998) most clearly meets the traceability criteria required for a certified reference material. Although useful for iron and several other metals, isotope dilution is not possible for monoisotopic elements like cobalt, so other techniques must also be used. Indeed, it is advisable that several techniques be used to certify a trace metal reference material. [Pg.49]

Dodson MH (1963) A theoretical study of the use of internal standards for precise isotopic analysis by the surface ionization technique Part I General first-order algebraic solutions. J Sci Instrum 40 289-295 Douglas DJ (1989) Some current perspectives on ICP-MS. Canad J Spectrosc 34 38-49 Douglas DJ, French JB (1986) An improved interface for inductively coupled plasma-mass spectrometry (ICP-MS). Spectrochim Acta 41B 197-204... [Pg.148]

Soil samples were wet sieved into (a) 2-4 mm, (b) 1-2 mm, (c) 0.5-1 mm, (d) 250-500 i m, (e) 125-250 am, (f) 63-125 j,m and (g) <63 j.m fractions. A ferruginous/magnetic fraction (m) was also prepared from the 2-4 mm fraction. Soil fractions were crushed, digested with HNO3/HCI/HF/HCIO4 and then analysed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) for Al, Ca, Cu, Fe, K, Mn, Na, P, S and Zn. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to determine Ag, As, Cd, Pb and Sb because of the lower detection limits by this method. The mineralogy of selected samples was determined by qualitative X-ray diffractometry. [Pg.88]


See other pages where Inductive coupled plasma mass spectrometry ICP-MS is mentioned: [Pg.97]    [Pg.397]    [Pg.402]    [Pg.76]    [Pg.113]    [Pg.177]    [Pg.288]    [Pg.443]    [Pg.618]    [Pg.261]    [Pg.629]    [Pg.9]    [Pg.305]    [Pg.435]    [Pg.237]    [Pg.31]    [Pg.371]    [Pg.58]    [Pg.195]    [Pg.195]    [Pg.253]    [Pg.230]    [Pg.148]    [Pg.409]    [Pg.452]    [Pg.3]   
See also in sourсe #XX -- [ Pg.20 , Pg.27 , Pg.31 ]




SEARCH



Coupled Plasma

Coupled spectrometry

Coupling spectrometry

Couplings mass spectrometry

ICP inductively coupled plasma

ICP-MS

ICP-MS (inductively coupled

ICP-MS (inductively coupled plasma-mass

Induction-coupled plasma

Inductive coupled plasma

Inductive coupled plasma mass spectrometry

Inductive coupling

Inductively couple plasma

Inductively couple plasma mass spectrometry

Inductively couple plasma mass spectrometry ICP-MS)

Inductively couple plasma mass spectrometry ICP-MS)

Inductively coupled

Inductively coupled mass spectrometry

Inductively coupled plasma MS

Inductively coupled plasma mass

Inductively coupled plasma mass spectrometry

Inductively coupled plasma mass spectrometry ICP/MS)

Inductively coupled plasma mass spectrometry ICP/MS)

Inductively coupled plasma mass spectrometry, ICP

Inductively mass spectrometry

MS ■ Mass spectrometry

Mass plasma

Plasma mass spectrometry

Plasma spectrometry)

Spectrometry MS

© 2024 chempedia.info