Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Induction periods measurements

Induction period measurements can also be used to determine interfacial tensions. To validate the values inferred, however, it is necessary to compare the results with an independent source. Hurley etal. (1995) achieved this for Cyanazine using a dynamic contact angle analyser (Calm DCA312). Solid-liquid interfacial tensions estimated from contact angle measurements were in the range 5-12 mJ/m which showed closest agreement with values (4—20mJ/m ) obtained from the log-log plots of induction time versus supersaturation based on the assumption of — tg. [Pg.135]

This quantity, small compared to induction periods measured by ordinary methods at lower temperatures, is quite large in comparison to the compression time in the shock wave 10 10-10-11 sec. [Pg.216]

Kinetic studies involving enzymes can principally be classified into steady and transient state kinetics. In tlie former, tlie enzyme concentration is much lower tlian that of tlie substrate in tlie latter much higher enzyme concentration is used to allow detection of reaction intennediates. In steady state kinetics, the high efficiency of enzymes as a catalyst implies that very low concentrations are adequate to enable reactions to proceed at measurable rates (i.e., reaction times of a few seconds or more). Typical enzyme concentrations are in the range of 10 M to 10 ], while substrate concentrations usually exceed lO M. Consequently, tlie concentrations of enzyme-substrate intermediates are low witli respect to tlie total substrate (reactant) concentrations, even when tlie enzyme is fully saturated. The reaction is considered to be in a steady state after a very short induction period, which greatly simplifies the rate laws. [Pg.833]

Figure 3-8 is a plot of Ca, Cb, Cq, and Cd for a hypothetical system of the Scheme X type. An interesting feature is the time delay after the start of the reaction before the final product, D, appears in significant concentrations. This delay in product appearance is called an induction period or lagtime. In order to observe an induction period it is only necessary that the system include several relatively stable intermediates, so that the bulk of the material balance is temporarily stored in these prior forms. An experimental measurement of the induction period requires an arbitrary definition of its length. [Pg.75]

Stability refers to a measure of the extent to which a fat resists the development of oxidative rancidity, and thus it is a measure of the induction period. Stability is usually expressed as the time that elapses under specified conditions before rancidity can be detected. [Pg.55]

Various investigators have tried to obtain information concerning the reaction mechanism from kinetic studies. However, as is often the case in catalytic studies, the reproducibility of the kinetic measurements proved to be poor. A poor reproducibility can be caused by many factors, including sensitivity of the catalyst to traces of poisons in the reactants and dependence of the catalytic activity on storage conditions, activation procedures, and previous experimental use. Moreover, the activity of the catalyst may not be constant in time because of an induction period or of catalyst decay. Hence, it is often impossible to obtain a catalyst with a constant, reproducible activity and, therefore, kinetic data must be evaluated carefully. [Pg.160]

Magnitudes of n have been empirically established for those kinetic expressions which have found most extensive application e.g. values of n for diffusion-limited equations are usually between 0.53 and 0.58, for the contracting area and volume relations are 1.08 and 1.04, respectively and for the Avrami—Erofe ev equation [eqn. (6)] are 2.00, 3.00 etc. The most significant problem in the use of this approach is in making an accurate allowance for any error in the measured induction period since variations in t [i.e. (f + f0)] can introduce large influences upon the initial shape of the plot. Care is needed in estimating the time required for the sample to reach reaction temperature, particularly in deceleratory reactions, and in considering the influences of an induction period and/or an initial preliminary reaction. [Pg.78]

The magnitude of t0 can be measured from the intercept of a f(a)—time plot. The existence of the induction period can introduce uncertainty into a reduced time analysis if the temperature coefficient of t0 differs from that later applicable, and it is necessary to plot (t — t0)/(tb — t0) against a where tb is the time at which the selected common value of a is attained. The occurrence of a slow initial process can be reflected in deviations from linearity in the f(a) time plot, though in favourable systems the contribution may be subtracted before analysis [40]. [Pg.80]

Fig. 22.—Inhibition of the thermal polymerization of styrene at 90°C by benzoquinone. The log of the viscosity relative to that of pure monomer is here used as a measure of polymerization. The small induction period in the absence of quinone presumably was caused by spurious inhibitors present in the monomer. (Results of Foord. )... Fig. 22.—Inhibition of the thermal polymerization of styrene at 90°C by benzoquinone. The log of the viscosity relative to that of pure monomer is here used as a measure of polymerization. The small induction period in the absence of quinone presumably was caused by spurious inhibitors present in the monomer. (Results of Foord. )...
We have compared, the rate acceleration effect induced either by the CD and different moieties originated from CD, i.e quinuclidine and quinoline. These experiments were carried out in ethanol If the relative rate of racemic hydrogenation is equal to one the following relative rates has been measured quinoline = 2, quinuclidine = 3, cinchonidine = 40. In the presence of quinoline a short induction period was needed to observe the rate acceleration. It is suggested that during this period quinoline was partly hydrogenated. Other tertiary nitrogen bases, such as triethylamine, triethylenediamine, etc. resulted also rate acceleration with relative rate = 2-4. [Pg.246]

Previous reports on FMSZ catalysts have indicated that, in the absence of added H2, the isomerization activity exhibited a typical pattern when measured as a function of time on stream [8, 9], In all cases, the initial activity was very low, but as the reaction proceeded, the conversion slowly increased, reached a maximum, and then started to decrease. In a recent paper [7], we described the time evolution in terms of a simple mathematical model that includes induction and deactivation periods This model predicts the existence of two types of sites with different reactivity and stability. One type of site was responsible for most of the activity observed during the first few minutes on stream, but it rapidly deactivated. For the second type of site, both, the induction and deactivation processes, were significantly slower We proposed that the observed induction periods were due to the formation and accumulation of reaction intermediates that participate in the inter-molecular step described above. Here, we present new evidence to support this hypothesis for the particular case of Ni-promoted catalysts. [Pg.553]

Thermal reduction at 623 K by means of CO is a common method of producing reduced and catalytically active chromium centers. In this case the induction period in the successive ethylene polymerization is replaced by a very short delay consistent with initial adsorption of ethylene on reduce chromium centers and formation of active precursors. In the CO-reduced catalyst, CO2 in the gas phase is the only product and chromium is found to have an average oxidation number just above 2 [4,7,44,65,66], comprised of mainly Cr(II) and very small amount of Cr(III) species (presumably as Q -Cr203 [66]). Fubini et al. [47] reported that reduction in CO at 623 K of a diluted Cr(VI)/Si02 sample (1 wt. % Cr) yields 98% of the silica-supported chromium in the +2 oxidation state, as determined from oxygen uptake measurements. The remaining 2 wt. % of the metal was proposed to be clustered in a-chromia-like particles. As the oxidation product (CO2) is not adsorbed on the surface and CO is fully desorbed from Cr(II) at 623 K (reduction temperature), the resulting catalyst acquires a model character in fact, the siliceous part of the surface is the same of pure silica treated at the same temperature and the anchored chromium is all in the divalent state. [Pg.11]

Fig. 8 Dependence of catalytic activity measured by TOP (rate of reaction per Rh atom) (squares) and IR intensity of hydride (2020-cm mode) (diamonds) during the induction period for ethene hydrogenation catalyzed by Rhg supported on La203 at 298 K and atmospheric pressure in a flow reactor (partial pressures in feed H2, 348 Torr C2H4, 75Torr He, 337 Torr) [37]... Fig. 8 Dependence of catalytic activity measured by TOP (rate of reaction per Rh atom) (squares) and IR intensity of hydride (2020-cm mode) (diamonds) during the induction period for ethene hydrogenation catalyzed by Rhg supported on La203 at 298 K and atmospheric pressure in a flow reactor (partial pressures in feed H2, 348 Torr C2H4, 75Torr He, 337 Torr) [37]...
To monitor the movement of surfactant ions in the octanol membrane visually, electrical potential oscillation across the octanol membrane was measured with eriochrome black T (EBT) as colored surfactant in phase w2 [20]. Migration of EBT from interface o/w2 toward bulk phase o could be seen during the induction period of oscillation. After EBT reached interface o/wl, the first pulse of oscillation started. Thus, surfactant ions at interface o/wl are indispensable for oscillation. Considerable convection in phase o and... [Pg.707]

In this study, potential oscillation was measured in the presence of lOOmM sodium salts of barbital, allobarbital, phenobarbital, and amobarbital in phase wl [19]. Their chemical structures are shown in Fig. 15. Amplitude and the oscillatory and induction periods were noted to depend on the particular hypnotic used. Amplitude decreased in the order, barbital > allobarbital > phenobarbital > amobarbital. The oscillatory period increased in the order, barbital < allobarbital < phenobarbital < amobarbital. Induction period increased in the order, barbital < allobarbital < phenobarbital < amobarbital. These parameters changed depending on drug concentration. Hypnotics at less than 5 mM had virtually no effect on the oscillation mode. [Pg.712]

Local anesthetics interact with peripheral nerve cell membranes and exert a pharmacological effect [34]. Potential oscillation was measured in the presence of 20 mM hydrochlorides of procaine, lidocaine, tetracaine, and dibucaine (structures shown in Fig. 16) [19]. Amplitude and the oscillatory and induction periods changed, the extent depending on the... [Pg.712]

Antibiotics may be classified by chemical structure. Erythromycin, chloramphenicol, ampicillin, cefpodoxime proxetil, and doxycycline hydrochloride are antibiotics whose primary structures differ from each other (Fig. 19). Figure 20 shows potential oscillation across the octanol membrane in the presence of erythromycin at various concentrations [23]. Due to the low solubility of antibiotics in water, 1% ethanol was added to phase wl in all cases. Antibiotics were noted to shift iiB,sDS lo more positive values. Other potentials were virtually unaffected by the antibiotics. On oscillatory and induction periods, there were antibiotic effects but reproducibility was poor. Detailed study was then made of iiB,sDS- Figure 21 (a)-(d) shows potential oscillation in the presence of chloramphenicol, ampicillin, cefpodoxime proxetil, and doxycycline hydrochloride [21,23]. Fb.sds differed according to the antibiotic in phase wl and shifted to more positive values with concentration. No clear relationship between activity and oscillation mode due to complexity of the antibacterium mechanism could be discovered but at least it was shown possible to recognize or determine antibiotics based on potential oscillation measurement. [Pg.715]


See other pages where Induction periods measurements is mentioned: [Pg.14]    [Pg.64]    [Pg.268]    [Pg.156]    [Pg.255]    [Pg.2432]    [Pg.2440]    [Pg.120]    [Pg.544]    [Pg.14]    [Pg.64]    [Pg.268]    [Pg.156]    [Pg.255]    [Pg.2432]    [Pg.2440]    [Pg.120]    [Pg.544]    [Pg.134]    [Pg.183]    [Pg.461]    [Pg.234]    [Pg.289]    [Pg.6]    [Pg.78]    [Pg.80]    [Pg.120]    [Pg.138]    [Pg.172]    [Pg.75]    [Pg.234]    [Pg.146]    [Pg.566]    [Pg.129]    [Pg.161]    [Pg.423]    [Pg.698]    [Pg.700]    [Pg.704]    [Pg.240]    [Pg.235]   
See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Induction period

Period measurement

© 2024 chempedia.info