Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Induction, dynamic

Holloway, D.M., Harrison, L.G. Armstrong, J.B. (1994). Computations of post-inductive dynamics in axolotl heart formation. Developmental Dynamics, Vol.200, pp. 242-256. [Pg.223]

Recently it has been shown that rotating coiled columns (RCC) can be successfully applied to the dynamic (flow-through) fractionation of HM in soils and sediments [1]. Since the flow rate of the extracting reagents in the RCC equipment is very similar to the sampling rate that is used in the pneumatic nebulization in inductively coupled plasma atomic emission spectrometer (ICP-AES), on-line coupling of these devices without any additional system seems to be possible. [Pg.459]

Induction period measurements can also be used to determine interfacial tensions. To validate the values inferred, however, it is necessary to compare the results with an independent source. Hurley etal. (1995) achieved this for Cyanazine using a dynamic contact angle analyser (Calm DCA312). Solid-liquid interfacial tensions estimated from contact angle measurements were in the range 5-12 mJ/m which showed closest agreement with values (4—20mJ/m ) obtained from the log-log plots of induction time versus supersaturation based on the assumption of — tg. [Pg.135]

Schreiner etal. (2001) modelled the precipitation process of CaC03 in the SFTR via direct solution of the coupled mass and population balances and CFD in order to predict flow regimes, induction times and powder quality. The fluid dynamic conditions in the mixer-segmenter were predicted using CFX 4.3 (Flarwell, UK). [Pg.258]

DFT molecular dynamics simulations were used to investigate the kinetics of the chemical reactions that occur during the induction phase of acid-catalyzed polymerization of 205 [97JA7218]. These calculations support the experimental finding that the induction phase is characterized by the protolysis of 205 followed by a rapid decomposition into two formaldehyde molecules plus a methylenic carbocation (Scheme 135). For the second phase of the polymerization process, a reaction of the protonated 1,3,5-trioxane 208 with formaldehyde yielding 1,3,5,7-tetroxane 209 is discussed (Scheme 136). [Pg.82]

Another class of devices used to control the voltage is operated using powered electronic switches to continuously adjust the capacitance and/or inductance in a substation to keep the voltage at precisely the voltage desired. These devices are relatively new in deployment, having been developed with the advent of inexpensive and robust power semiconductor components. These devices are part of a group broadly known as FACTS (Flexible AC Transmission System) devices and include static var compensators, static synchronous compensators, and dynamic voltage restorers. [Pg.432]

Hydantoinases belong to the E.C.3.5.2 group of cyclic amidases, which catalyze the hydrolysis of hydantoins [4,54]. As synthetic hydantoins are readily accessible by a variety of chemical syntheses, including Strecker reactions, enantioselective hydantoinase-catalyzed hydrolysis offers an attractive and general route to chiral amino acid derivatives. Moreover, hydantoins are easily racemized chemically or enzymatically by appropriate racemases, so that dynamic kinetic resolution with potential 100% conversion and complete enantioselectivity is theoretically possible. Indeed, a number of such cases using WT hydantoinases have been reported [54]. However, if asymmetric induction is poor or ifinversion ofenantioselectivity is desired, directed evolution can come to the rescue. Such a case has been reported, specifically in the production of i-methionine in a whole-cell system ( . coli) (Figure 2.13) [55]. [Pg.39]

Inductively coupled plasma mass spectrometry was applied to the analysis of six organotin compounds (chlorides of dimethyl-, dibutyl-, trimethyl-, tributyl-, diphenyl-, and triphenyltin). Detection hmits for the six organotins ranged from 24 to 51 pg as tin the dynamic range was over lO, from 1 pg/1 to 10 mg/1 (Inoue Kawabata, 1993). [Pg.7]

Fig. 3.16 Dynamic model for polyamide intervention in LSF2/YYI induction of latency. The host factor LSF (orange oval) is shown bound to the HiV long terminal repeat (LTR) and recruits YYl (green triangle) followed by HDAC... Fig. 3.16 Dynamic model for polyamide intervention in LSF2/YYI induction of latency. The host factor LSF (orange oval) is shown bound to the HiV long terminal repeat (LTR) and recruits YYl (green triangle) followed by HDAC...
It is found that the CNF-HT has not catalytic activity for ODP. After oxidation, all the three samples show hi ly catalytic performances, which are shown in Fig.3. CNF-HL has the longest induction period among the three samples, and it has relatively low activity and propene selectivity at the beginning of the test. During the induction periods, the carbon balance exceeds 105% and then fall into 100 5%, which implies the CNF structure is stable and the surface chemistry of CNF reaches a dynamic equilibrium eventually. These results indicate that the catalytic activity of ODP can be attributed to the existence of surface oxygen complexes which are produced by oxidation. The highest propene yield(lS.96%) is achieve on CNF-HL at a 52.97% propane conversion. [Pg.747]

The bottom-up approach contains two distinct stages. First, by successive backpropagation steps one builds a decision policy. Then, this uncovered policy is evaluated and refined, and its expected benefits confirmed before any implementation actually takes place. This two-stage process is conceptually similar to dynamic programming solution strategies, where first a decision policy is constructed by backward induction, and then one finds a realization of the process for the given policy, in order to check its expected performance (Bradley et al., 1977). [Pg.145]

Plasma sources were developed for emission spectrometric analysis in the late-1960s. Commercial inductively coupled and d.c. plasma spectrometers were introduced in the mid-1970s. By comparison with AAS, atomic plasma emission spectroscopy (APES) can achieve simultaneous multi-element measurement, while maintaining a wide dynamic measurement range and high sensitivities and selectivities over background elements. As a result of the wide variety of radiation sources, optical atomic emission spectrometry is very suitable for multi-element trace determinations. With several techniques, absolute detection limits are below the ng level. [Pg.614]

A recent example demonstrates that corals rely on induced biosynthesis of terpenes as a dynamic defense strategy as well. The induction of terpenoid secondary metabolites was observed in the sea whip Pseudopterogorgia elisabethae [162]. Levels of pseudopterosins 89-92, a group of diterpene glycosides with anti-inflammatory and analgesic properties (Scheme 23) [163-165], are increased in response predation by the mollusk Cyphoma gibbosum. First bioassays indicate that these natural products are involved in the chemical defense. [Pg.216]

Brenner et al. [ 169] applied inductively coupled plasma atomic emission spectrometry to the determination of calcium (and sulfate) in brines. The principal advantage of the technique was that it avoided tedious matrix matching of calibration standards when sulfate was determined indirectly by flame techniques. It also avoided time-consuming sample handling when the samples were processed by the gravimetric method. The detection limit was 70 ig/l and a linear dynamic range of 1 g/1 was obtained for sulfate. [Pg.156]


See other pages where Induction, dynamic is mentioned: [Pg.11]    [Pg.11]    [Pg.240]    [Pg.240]    [Pg.1499]    [Pg.388]    [Pg.317]    [Pg.543]    [Pg.58]    [Pg.84]    [Pg.48]    [Pg.132]    [Pg.436]    [Pg.745]    [Pg.30]    [Pg.29]    [Pg.159]    [Pg.163]    [Pg.257]    [Pg.142]    [Pg.148]    [Pg.371]    [Pg.7]    [Pg.168]    [Pg.129]    [Pg.224]    [Pg.205]    [Pg.17]    [Pg.162]    [Pg.206]    [Pg.329]    [Pg.168]    [Pg.56]    [Pg.133]    [Pg.15]    [Pg.558]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Induction, dynamic static

Inductively coupled plasma sources linear dynamic range

© 2024 chempedia.info