Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

INDEX organic solvent

If paraffin permeates a white opaque paper, one can read letters through the paper because the paper becomes transparent. This phenomenon is based on the simple principle that micropores in the paper are filled with paraffin, which has a refractive index that is close to that of cellulose. If the porous PVA-PVAc composite film is soaked in organic solvents having the same refractive indices as that of PVA, the porous film is expected to become transparent again, according to the same principle as the phenomenon between paraffin and cellulose. On the basis of this consideration, subsequent experi-... [Pg.173]

One can read letters through the porous PVA-PVAc film in benzene, but one cannot do so in cyclohexane nor in the case of the blank. This is supported by the fact that the refractive indices of benzene are close to that of PVA, but the refractive index of cyclohexane is far from that of PVA. When the porous film was dipped in a mixed solvent of benzene and cyclohexane (8.0 2.0 in weight), it became semi-transparent. To make this point clearer, the refractive index and the dispersive power of polymers and organic solvents were measured. The results are shown in Table 3, which shows that the refractive index of PVA is near that of benzene and that the dispersion power of aliphatic compounds is lower than that of aromatic compounds. [Pg.174]

Titanium dioxide is an amorphous white powder characterized by brightness and a very high refractive index (2.4). It is insoluble in water and organic solvents, and is a very stable material, resistant to light, pH variation, oxidation, etc. Ti02 is available in oil-dispersible and water-dispersible forms. [Pg.118]

The SEC mechanism demands only an isocratic (constant composition) solvent system with normally a single solvent. The most frequently used organic solvents are THF, chloroform, toluene, esters, ketones, DMF, etc. The key solvent parameters of interest in SEC are (i) solubility parameter (ii) refractive index (iii) UV/IR absorbance (iv) viscosity and (v) boiling point. Sample solutions are typically prepared at concentrations in the region of 0.5-5 mg mL-1. In general an injection volume of 25-100p,L per 300 x 7.5 mm column should be employed. For SEC operation with polyolefins chlorinated solvents (for detector sensitivity and increased boiling point) and elevated temperatures (110 to 150 °C) are required to dissolve olefin polymer. HFIP is the preferred solvent for SEC analysis of polyesters and polyamides. [Pg.259]

FIGURE 2.1 Energy of the 0-0 vibrational transition in the principal electronic absorption spectrum of violaxanthin (l Ag-—>1 BU+), recorded in different organic solvents, versus the polarizability term, dependent on the refraction index of the solvent (n). The dashed line corresponds to the position of the absorption band for violaxanthin embedded into the liposomes formed with DMPC (Gruszecki and Sielewiesiuk, 1990) and the arrow corresponds to the polarizability term of the hydrophobic core of the membrane (n = 1.44). [Pg.20]

For HPLC, some fairly broad generalizations can be made about the selection of certain preferred solvents from the large number available. A suitable solvent will preferably have low viscosity, be compatible with the detection system, be readily available in pure form, and if possible have low flammability and toxicity. In selecting organic solvents for use in mobile phases, several physical and chemical properties of the solvent should be considered. From the standpoint of detection, the refractive index or UV cutoff values are also important. [Pg.552]

P.O.l has lost most of its commercial significance. Its shade is a very reddish yellow the Color Index classifies it as a yellowish orange. Resistance to organic solvents is very low. P.O.l dissolves more easily in common organic solvents than do other monoazo orange pigments, and it is also less lightfast. [Pg.230]

The most important route to 1-acylaminoanthraquinones involves reaction of 1-aminoanthraquinone with acid chlorides in an organic solvent. Reaction of 1-aminoanthraquinone with benzoylchloride in nitrobenzene at 100 to 150°C affords 1-benzoylaminoanthraquinone, a yellow pigment which is registered as Colour Index Constitution No. 60515. The reaction may also be performed in the presence of a tertiary amine, which acts as a proton acceptor ... [Pg.505]

The MA complex is lipophilic and dissolves in organic solvents and the distribution constant A),c is defined (index C for complex) ... [Pg.148]

White or colorless crystalline solid (nonahydrate - rhombic crystal) deliquescent refractive index 1.54 melts at 73.5°C decomposes at 150°C highly soluble in cold water (63.7% at 25°C), decomposes in hot water, soluble in polar organic solvents. [Pg.9]

Occurs as colorless orthorhombic modifications, valentinite, or colorless cubic form, senarmontite density 5.67 g/cm (valentinite), 5.20g/cm3 (senar-montite) cubic modification is dimeric consisting of Sb20e discrete molecules refractive index 2.087 melts in the absence of oxygen at 656°C boils at 1,550°C (sublimes) sublimes in vacuum at 400°C very slightly soluble in water, insoluble in organic solvents soluble in HCl, caustic alkalies and tartaric acid. [Pg.57]

Dark reddish-brown liquid the only nonmetallic element that is a liquid at ambient temperatures strong disagreeable odor volatilizes density 3.12 g/mL at 20°C vapor density 7.59 g/L refractive index 1.6475 boils at 58.8°C solidifies at -7.2°C vapor pressure 64 torr at 0°C and 185 torr at 22°C critical temperature 315°C critical pressure 102 atm critical volume 127 cm /mol surface tension 39.8 dynes/cm at 25°C electrical resistivity 6.5 x 10i°ohm-cm at 25°C sparingly soluble in water (2.31 g/lOOg at 0°C and 3.35 g/lOOg at 25°C) soluble in common organic solvents. [Pg.137]

Colorless fuming liquid pungent odor refractive index 1.516 at 14°C density 1.574g/mL at 21°C hods at 76°C freezes at -112°C decomposes in water soluble in benzene, carbon disulfide, ether and chloroform and other halo-genated organic solvents. [Pg.715]

Ionic liquids are a class of solvents and they are the subject of keen research interest in chemistry (Freemantle, 1998). Hydrophobic ionic liquids with low melting points (from -30°C to ambient temperature) have been synthesized and investigated, based on 1,3-dialkyl imidazolium cations and hydrophobic anions. Other imidazolium molten salts with hydrophilic anions and thus water-soluble are also of interest. NMR and elemental analysis have characterized the molten salts. Their density, melting point, viscosity, conductivity, refractive index, electrochemical window, thermal stability, and miscibility with water and organic solvents were determined. The influence of the alkyl substituents in 1,2, 3, and 4(5)-positions on the imidazolium cation on these properties has been scrutinized. Viscosities as low as 35 cP (for l-ethyl-3-methylimi-dazolium bis((trifluoromethyl)sulfonyl)amide (bis(triflyl)amide) and trifluoroacetate) and conductivities as high as 9.6 mS/cm were obtained. Photophysical probe studies were carried out to establish more precisely the solvent properties of l-ethyl-3-methyl-imidazolium bis((trifluoromethyl)sulfonyl)amide. The hydrophobic molten salts are promising solvents for electrochemical, photovoltaic, and synthetic applications (Bon-hote et al., 1996). [Pg.87]

The supporting medium (aqueous or organic solvents membrane-mimetic compartments) also has a profound influence on the optical and electro-optical properties of nanosized semiconductor particles. This dielectric confinement (or local field effect) originates, primarily, in the difference between the refractive indices of semiconductor particles and the surrounding medium [573, 604], In general, the refractive index of the medium is lower than that of the semiconductor particle, which enhances the local electric field adjacent to the semiconductor particle surface as compared with the incident field intensity. Dielectric confinement of semiconductor particles also manifests in altered optical and electro-optical behavior. [Pg.126]

A 100-ml autoclave was charged with ethyl acetate (24 parts), 1,4-dioxene (20 parts), and t-bu ty 1 pcrox pi val ate (0.3 parts) and then treated with chlorotrifluoroethylene (31 parts) and polymerized at 55°C for 13 hours. The precipitated polymer was isolated and dissolved in 150 ml of tetrahydrofuran (THF) and then precipitated in methanol, the process being repeated twice. Thirty-five grams of product were isolated having a Tg of 154°C and an Mn of28,000 Da with a refractive index of 1.459. The material was soluble in most organic solvents and formed transparent films. [Pg.534]

Fig. 6. Calculated ATR spectra (angle of incidence 45°) for a monolayer adsorbate (thickness tZ3 = 3 A) on a 20-nm-thick metal film in contact with a solvent as a function of the complex refractive index of the metal film. Sohd line parallel polarized light dotted line perpendicular-polarized light. The appropriate complex refractive index n2 is given at the top of each spectrum. The vertical bars indicate the scale for the absorbance, which is different for each spectrum. Parameters ni = 4.01 (Ge), n4 = 1.4 (organic solvent), rfs = 3 A, He = 1.6, S = 280000cm , Vo = 2000cm , y = 60cm . The parameters correspond to adsorbed CO. The calculations were performed by using the formalism proposed by Hansen (76), and the results are given in terms of absorbance A = —logio(7 /7 o), where 77 is the reflectivity of the system Ge/Pt/ adsorbate/solvent and Rg is the reflectivity of the system Ge/Pt/solvent (7S). Fig. 6. Calculated ATR spectra (angle of incidence 45°) for a monolayer adsorbate (thickness tZ3 = 3 A) on a 20-nm-thick metal film in contact with a solvent as a function of the complex refractive index of the metal film. Sohd line parallel polarized light dotted line perpendicular-polarized light. The appropriate complex refractive index n2 is given at the top of each spectrum. The vertical bars indicate the scale for the absorbance, which is different for each spectrum. Parameters ni = 4.01 (Ge), n4 = 1.4 (organic solvent), rfs = 3 A, He = 1.6, S = 280000cm , Vo = 2000cm , y = 60cm . The parameters correspond to adsorbed CO. The calculations were performed by using the formalism proposed by Hansen (76), and the results are given in terms of absorbance A = —logio(7 /7 o), where 77 is the reflectivity of the system Ge/Pt/ adsorbate/solvent and Rg is the reflectivity of the system Ge/Pt/solvent (7S).
Fig. 12. The porosity of the catalyst determines not only its activity but also the chain length. Here melt index (MI) varies with catalyst pore volume in a series in which a common hydrogel was dried by extraction with different organic solvents to achieve variations in porosity. Fig. 12. The porosity of the catalyst determines not only its activity but also the chain length. Here melt index (MI) varies with catalyst pore volume in a series in which a common hydrogel was dried by extraction with different organic solvents to achieve variations in porosity.

See other pages where INDEX organic solvent is mentioned: [Pg.1283]    [Pg.1286]    [Pg.437]    [Pg.237]    [Pg.24]    [Pg.178]    [Pg.71]    [Pg.284]    [Pg.493]    [Pg.19]    [Pg.237]    [Pg.160]    [Pg.161]    [Pg.28]    [Pg.1659]    [Pg.1662]    [Pg.84]    [Pg.30]    [Pg.442]    [Pg.268]    [Pg.714]    [Pg.197]    [Pg.237]    [Pg.110]    [Pg.352]    [Pg.22]    [Pg.23]    [Pg.104]    [Pg.437]    [Pg.763]    [Pg.225]    [Pg.80]   
See also in sourсe #XX -- [ Pg.316 ]




SEARCH



INDEX organic

© 2024 chempedia.info