Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indanones, asymmetric

Catalytic asymmetric methylation of 6,7-dichloro-5-methoxy-2-phenyl-l-indanone with methyl chloride in 50% sodium hydroxide/toluene using M-(p-trifluoro-methylbenzyDcinchoninium bromide as chiral phase transfer catalyst produces (S)-(+)-6,7-dichloro-5-methoxy-2-methyl-2--phenyl-l-indanone in 94% ee and 95% yield. Under similar conditions, via an asymmetric modification of the Robinson annulation enqploying 1,3-dichloro-2-butene (Wichterle reagent) as a methyl vinyl ketone surrogate, 6,7 dichloro-5-methoxy 2-propyl-l-indanone is alkylated to (S)-(+)-6,7-dichloro-2-(3-chloro-2-butenyl)-2,3 dihydroxy-5-methoxy-2-propyl-l-inden-l-one in 92% ee and 99% yield. Kinetic and mechanistic studies provide evidence for an intermediate dimeric catalyst species and subsequent formation of a tight ion pair between catalyst and substrate. [Pg.67]

There are only a few reports on chiral phase transfer mediated alkylations". This approach, which seems to offer excellent opportunities for simple asymmetric procedures, has been demonstrated in the catalytic, enantioselective alkylation of racemic 6,7-dichloro-5-methoxy-2-phenyl-l-indanone (1) to form ( + )-indacrinone (4)100. /V-[4-(tnfluoromethyl)phenylmethyl]cinchoninium bromide (2) is one of the most effective catalysts for this reaction. The choice of reaction variables is very important and reaction conditions have been selected which afford very high asymmetric induction (92% cc). A transition state model 3 based on ion pairing between the indanone anion and the benzylcinchoninium cation has been proposed 10°. [Pg.718]

This asymmetric phase-transfer method has been applied to enantio-selective Robinson annelation as shown in Scheme 14 (41). First, alkylation of a 1-indanone derivative with the Wichtetie reagent as a methyl vinyl ketone equivalent in the presence of p-CF3BCNB gives the S-alkylation product in 92% ee and 99% yield. With 1 -(p-trifluoro-methylbenzyl)cinchonidinium bromide, a pseudo-enantiomeric diaste-reomer of p-CF3BCNB, as catalyst, the -alkylation product is obtained in 78% ee and 99% yield. These products are readily convertible to the... [Pg.177]

Asymmetric phenylation of carbanions with chiral iodonium salts has recently been reported [70]. The chiral diiodonium salt 93 selectively reacts with potassium enolate of l-oxo-2-indancarboxylate 92 to give the a-phenylated indanone 94 with moderate enantioselectivity (Scheme 42). [Pg.116]

An important issue is the right choice of substrate 1 which functions as an anion precursor. Successful organocatalytic conversions have been reported with indanones and benzophenone imines of glycine derivatives. The latter compounds are, in particular, useful for the synthesis of optically active a-amino acids. Excellent enantioselectivity has been reported for these conversions. In the following text the main achievements in this field of asymmetric organocatalytic nucleophilic substitutions are summarized [1, 2], The related addition of the anions 2 to Michael-acceptors is covered by chapter 4. [Pg.13]

The first examples of asymmetric Michael additions of C-nudeophiles to enones appeared in the middle to late 1970s. In 1975 Wynberg and Helder demonstrated in a preliminary publication that the quinine-catalyzed addition of several acidic, doubly activated Michael donors to methyl vinyl ketone (MVK) proceeds asymmetrically [2, 3], Enantiomeric excesses were determined for addition of a-tosylnitro-ethane to MVK (56%) and for 2-carbomethoxyindanone as the pre-nudeophile (68%). Later Hermann and Wynberg reported in more detail that 2-carbomethoxy-indanone (1, Scheme 4.3) can be added to methyl vinyl ketone with ca 1 mol% quinine (3a) or quinidine (3b) as catalyst to afford the Michael-adduct 2 in excellent yields and with up to 76% ee [2, 4], Because of their relatively low basicity, the amine bases 3a,b do not effect the Michael addition of less acidic pre-nucleophiles such as 4 (Scheme 4.3). However, the corresponding ammonium hydroxides 6a,b do promote the addition of the substrates 4 to methyl vinyl ketone under the same mild conditions, albeit with enantioselectivity not exceeding ca 20% [4],... [Pg.47]

Crystallization-induced asymmetric transformation has already been described by Leuchs in 1913 during the resolution of 2-(2-carboxybenzyl)-l-indanone with brucine.34 In this case spontaneous racemization occurred. More recently researchers at Sanofi observed spontaneous racemization during the resolution of 3-cyano-3-(3,4-dichlorophenyl)propionic acid (7), most likely as a result of the basic resolving agent [>-(-)-N-1 n etli y I g I near nine [d-(-)-MGA] (8) (Scheme 7.6).35 The enantiopure cyano acid, obtained in 91% overall yield, is subsequently reduced to (+)-4-amino-3-(3,4-dichlorophenyl)-l-butanol (9), a key intermediate in the phase 2 synthesis of tachykinin antagonists. [Pg.112]

Muzart and coworkers have reported a new catalytic enantioselective protonation of prochiral enolic species generated by palladium-induced cleavage of p-ketoesters or enol carbonates of a-alkylated 1-indanones and 1-tetralones [21 ]. Among the various (S)-p-aminocycloalkanols examined, 17 and 18 were effective chiral catalysts for the asymmetric reaction and (J )-enriched a-alkylated 1-indanones and 1-tetralones were obtained with up to 72% ee. In some cases, the reaction temperature affected the ee. [Pg.145]

In 1993, Bolm reported that these reactions could be performed using catalytic quantities (10 mol%) of the chiral P-hydroxy sulfoximine.132 The enantiomeric purities of the product alcohols ranged from 52% (1-indanone) to 93% (PhCOCHjOSiRj). In many cases the enantiomeric purities were enhanced using sodium borohydride as reductant in the presence of chlorotrimethylsilane.133 These methods have been extended to the asymmetric reductions of imines.134 /V-SPh-substituted imines gave the highest enantioselectivities and these reductions proceeded in the same stereochemical sense as the reductions of ketones. [Pg.360]

D. The use of chiral oxazaborolidines as enantioselective catalysts for the reduction of prochiral ketones, imines, and oximes, the reduction of 2-pyranones to afford chiral biaryls, the addition of diethylzinc to aldehydes, the asymmetric hydroboration, the Diels-Alder reaction, and the aldol reaction has recently been reviewed.15b d The yield and enantioselectivity of reductions using stoichiometric or catalytic amounts of the oxazaborolidine-borane complex are equal to or greater than those obtained using the free oxazaborolidine.13 The above procedure demonstrates the catalytic use of the oxazaborolidine-borane complex for the enantioselective reduction of 1-indanone. The enantiomeric purity of the crude product is 97.8%. A... [Pg.67]

Chiral bicyclic lactams are excellent precursors to a wide variety of chiral, non-racemic carbocycles including cyclopentenones, cyclohexenones, cyclopropanes, indanones, naphthalenones, and asymmetric keto acids.3 Recently they have been applied to the synthesis of chiral, non-racemic pyrrolidines and pyrroiidinones,4 that are medicinally and synthetically important molecules.5 The three-step procedure described here provides an efficient route (overall yield 46%) to (S)-5-heptyl-2-pyrrolidinone of high enantiomeric purity. The scheme below illustrates this reaction. [Pg.226]

Asymmetric Alkylation. 7Y-[4-(Trifluoromethyl)benzyl]-cinchoninium bromide (1) has been used as chiral phase-transfer catalyst in the alkylation of indanones (eq 1). For the alkylation of a-aryl-substituted carbonyl compounds the diastere-omeric 7Y-[4-(trifluoromethyl)benzyl]cinchonidinium bromide (2) was used to obtain the opposite stereochemistry (eqs 2 and 3). The asymmetric alkylation of oxindoles was used as the key step in an asymmetric synthesis of (—)-physostigmine (eq 4). ... [Pg.518]

Asymmetric Hydroxylation. The catalyst has been used for asymmetric a-hydroxy lations of indanones and a-tetralones using the standard conditions in combination with oxygen and Triethyl Phosphite (eq 7). Substituents on the aromatic ring of the substrates will influence the tt-tt interaction in the ion pair and affect the ee. Similarly, ( )-2-ethylidene-1 -tetralone was oxidized to the a-hydroxy ketone (eq 8). [Pg.519]

Asymmetric Robinson Annulation. 2-Propyl-1-indanone undergoes Robinson annulation with the catalyst and methyl vinyl ketone (eq 6). Higher ee values were achieved using 1,3-dichloro-2-butene (Wichterle Reagent) as an MVK surrogate for the Michael addition and overall Robinson annulation (eq 9)... [Pg.519]

In the laboratory of D. Ma, the asymmetric synthesis of several metabotropic glutamate receptor antagonists derived from a-alkylated phenylglycines was undertaken. The preparation of (S)-1-aminoindan-1,5-dicarboxylic acid (AIDA) started with the Perkin reaction of 3-bromobenzaldehyde and malonic acid. The resulting ( )-cinnamic acid derivative was hydrogenated and the following intramolecular Friedel-Crafts acylation afforded the corresponding indanone, which was then converted to (S)-AIDA. [Pg.339]

Hughes, D. L. Dolling, U.-H. Ryan, K. M. Schoenewaldt,E. F. Grabowski, E.J.J., Efficient Catalytic Asymmetric Alkylations. 3. A Kinetic and Mechanistic Study of the Enantioselective Phase-Transfer Methylation of 6,7-Dichloro-5-methoxy-2-phenyl-l-indanone J. Org. Chem. 1987, 52, 4745. [Pg.199]

In 1984, the first successful monumental use of cinchona PTC for asymmetric a-substitution of carbonyls was reported by Dolling and coworkers of the Merck research group (Scheme 6.1) [8], In this work, cinchoninium salt (1) was employed in the catalytic asymmetric methylation of 6,7-dichloro-5-methoxy-2-phenyl-l-indanone (2) under phase-transfer conditions. The methylated product 3, which was finally transformed to (+ )-indacrinone through three further steps, was obtained in 95% conversion with 92% enantiomeric excess (ee). Through the systematic investigation, the group reported the relationship between the chemical/optical yield and the reaction variables (e.g., amount or concentration of each chemical species, halide of... [Pg.134]

Asymmetric Michael additions can also be performed under phase-transfer conditions with an achiral base in the presence of a chiral quaternary ammonium salt as a phase-transfer agent. Conn and coworkers conducted the Michael addition of 2-propyl-l-indanone (13) to methyl vinyl ketone under biphasic conditions (aq 50% NaOH/toluene) using the cinchonine/cinchonidine-derived chiral phase-transfer catalysts (PTCs), 14a and 14b, as a catalyst (Scheme 9.5). However, only low to... [Pg.252]

In 2008, Jorgensen and coworkers reported the first example of the asymmetric conjugate addition of (5-ketoesters 184 to the vinyl bisphosphonate esters 183 catalyzed by the parent cinchona alkaloids (20 mol%) such as dihydroquinine and dihydroqui-nidine [57]. High yields and enantioselectivities (up to 99% ee) were achieved for a wide range of indanone-based (3-ketoesters as well as various 5-tert-butyloxycarbonyl... [Pg.286]

Dendrimer-supported prolinol derivahve 166 has been prepared and used as a chiral ligand in the asymmetric borane reduction ofindanones 167 and tetralones (Scheme 3.49) [99]. From substituted indanones or tetralones, ds and trans isomers were obtained in a near 1 1 ratio, tn the case of the reduction of substituted inda-none, the ds isomers had an ee of about 80%, whereas the trans isomers had an ee of about 95%. tn the case of tetralones, ee-values >90% ee were obtained for both the cis and trans isomers. [Pg.103]

Scheme 9.13 Asymmetric hydrogenation of cyclic enamides with an endocyclic double bond derived from a tetralone and a indanone. Scheme 9.13 Asymmetric hydrogenation of cyclic enamides with an endocyclic double bond derived from a tetralone and a indanone.
By analogy with results obtained from asymmetric alkylations of indanone derivatives under PTC conditions, a tt- tt interaction model between catalyst and electrophilic species is proposed (Scheme 19). [Pg.184]

The first breakthrough in asymmetric alkylation came in 1984 when Dolling and coworkers [14] reported a 94% ee in the phase-transfer alkylation of indanone derivatives using Cinchona alkaloids as catalysts, Eq. (2). [Pg.1203]

Muzart and coworkers have succeeded in a catalytic asymmetric protonation of enol compounds generated by palladium-induced cleavage of 3-ketoesters or enol carbonates under nearly neutral conditions [47,48]. Among the various optically active amino alcohols tested, (-i-)-e do-2-hydroxy-endo-3-aminoborn-ane (25) was effective as a chiral catalyst for the enantioselective reaction. Treatment of the P-ketoester of 2-methyl-1-indanone 58 with a catalytic amount of the amino alcohol 25 (0.3 equiv) and 5% Pd on charcoal (0.025 equiv) under bubbling of hydrogen at 21 °C gave the (P)-enriched product 59 with 60% ee... [Pg.1229]

Fluorine substituents on the aromatic ring in chiral quaternary ammonium salts also play an important role for the improvement of enantioselectivity in asymmetric alkylations of the Schiff base of glycine esters in an aqueous biphase system. Dolling first demonstrated asymmetric methylation of indanone (44) by cinchonidine ammonium salt (43) (Scheme 5.12) [18]. [Pg.193]

Figure 16.2-53. Chemoenzymatic synthesis of 2-hydroxy-l-indanone. The racemic syn and anti diols were prepared by chemical dihydroxylation of indane. Asymmetric induction was achieved by microbial oxidation (MO) of these diols. Figure 16.2-53. Chemoenzymatic synthesis of 2-hydroxy-l-indanone. The racemic syn and anti diols were prepared by chemical dihydroxylation of indane. Asymmetric induction was achieved by microbial oxidation (MO) of these diols.
A conceptually different approach to interligand asymmetric induction uses chiral phase transfer catalysts. Scheme 3.26 illustrates two examples of such a process using an A -benzylcinchonium halide catalyst. The first is an indanone methylation [150] and the second is a glycine alkylation [151]. Hughes et al. reported a detailed kinetic study of the indanone methylation which revealed a mechanism significantly more complicated than a simple phase-transfer process the reaction is 0.55 order in catalyst and 0.7 order in methyl chloride, deprotonation of the indanone occurs at the interface, and methylation of the enolate (not deprotonation) is rate-determining [150]. Nevertheless, the rationale for the... [Pg.101]


See other pages where Indanones, asymmetric is mentioned: [Pg.753]    [Pg.525]    [Pg.274]    [Pg.72]    [Pg.317]    [Pg.230]    [Pg.152]    [Pg.77]    [Pg.43]    [Pg.136]    [Pg.6]    [Pg.156]    [Pg.193]    [Pg.557]    [Pg.291]    [Pg.238]    [Pg.1203]    [Pg.1232]    [Pg.189]    [Pg.478]    [Pg.211]    [Pg.129]   


SEARCH



Indanones

© 2024 chempedia.info