Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Incomplete deposition

The on-line approach shows high efficiency and sensitivity. However, off-line cleaning or replacement requirements of the interface result in limited operational time. On the other hand, problems have been reported with the off-line approach too. The essentially arbitrary collection of fractions (spots) clearly offsets the high resolution of the separation. Other problems may arise from the incomplete deposition of the analyte in the form of drops onto the target, which in turn results in a substantial fraction of the analyte being present in the next deposited drop. [Pg.172]

The electrolytic separation of copper and nickel from cupronickel alloy can be achieved by controlling the pH and electrolytic conditions. Copper is determined in strongly acidic solution at a potential not exceeding 4V (generally 2-3 V) as above this potential nickel may also plate out. The solution should contain a mixture of sulfuric and nitric acids for complete deposition. However, a high concentration of acid is not recommended as it may lead to incomplete deposition of copper or the deposit may not adhere satisfactorily to the cathode. [Pg.2035]

Flame spray metallising is widely used for the protection of metal against corrosion, especially for in situ protection of stmctural members. The principal metal used for spraying of plastics is sine. Aluminum and copper are also used. If the distance from the part is too great, the zinc solidifies before it touches the part and adhesion is extremely poor. If the molten zinc oxidizes, conductivity and adhesion are poor. If the distance is too short, the zinc is too hot and the plastic warps or degrades. These coatings are not as dense as electrically deposited coatings because of numerous pores, oxide inclusions, and discontinuities where particles have incompletely coalesced. [Pg.135]

Some concerns directly related to a tomizer operation include inadequate mixing of Hquid and gas, incomplete droplet evaporation, hydrodynamic instabiHty, formation of nonuniform sprays, uneven deposition of Hquid particles on soHd surfaces, and drifting of small droplets. Other possible problems include difficulty in achieving ignition, poor combustion efficiency, and incorrect rates of evaporation, chemical reaction, solidification, or deposition. Atomizers must also provide the desired spray angle and pattern, penetration, concentration, and particle size distribution. In certain appHcations, they must handle high viscosity or non-Newtonian fluids, or provide extremely fine sprays for rapid cooling. [Pg.334]

Many materials have been deposited by PECVD. Typically, the use of a plasma allows equivalent-quaUty films to be deposited at temperatures several hundred degrees centigrade lower than those needed for thermal CVD techniques. Often, the plasma-enhanced techniques give amorphous films and films containing incompletely decomposed precursor species such as amorphous siUcon (i -Si H) and amorphous boron (i -B H). [Pg.525]

High quahty SAMs of alkyltrichlorosilane derivatives are not simple to produce, mainly because of the need to carefully control the amount of water in solution (126,143,144). Whereas incomplete monolayers are formed in the absence of water (127,128), excess water results in facile polymerization in solution and polysiloxane deposition of the surface (133). Extraction of surface moisture, followed by OTS hydrolysis and subsequent surface adsorption, may be the mechanism of SAM formation (145). A moisture quantity of 0.15 mg/100 mL solvent has been suggested as the optimum condition for the formation of closely packed monolayers. X-ray photoelectron spectroscopy (xps) studies confirm the complete surface reaction of the —SiCl groups, upon the formation of a complete SAM (146). Infrared spectroscopy has been used to provide direct evidence for the hiU hydrolysis of methylchlorosilanes to methylsdanoles at the soHd/gas interface, by surface water on a hydrated siUca (147). [Pg.537]

Circffiation and heat transfer in this type of evaporator are strongly affected by the liquid level. Highest heat-transfer coefficients are achieved when the level, as indicated by an external gauge glass, is only about halfway up the tubes. Shght reductions in level below the optimum result in incomplete wetting of the tube walls with a consequent increased tendency to foul and a rapid reduction in capacity. When this type of evaporator is used with a liquid that can deposit salt or scale, it is customary to operate with the liquid level appreciably higher than the optimum and usually appreciably above the top tube sheet. [Pg.1139]

Evidence of substantial deposition caused by Gallionella in tubercles is incomplete, however. The amount of such deposition is usually insignificant compared to the deposit and corrosion-product contribution that occurs in the absence of bacteria. [Pg.122]

Figure 6.9 Irregular deposit and corrosion-product mounds containing concentrations of sulfate-reducing bacteria on the internal surface of a 316 stainless steel transfer line carrying a starch-clay mixture used to coat paper material. Attack only occurred along incompletely closed weld seams, with many perforations. Note the heat tint, partially obscured by the deposit mounds, along the circumferential weld. Figure 6.9 Irregular deposit and corrosion-product mounds containing concentrations of sulfate-reducing bacteria on the internal surface of a 316 stainless steel transfer line carrying a starch-clay mixture used to coat paper material. Attack only occurred along incompletely closed weld seams, with many perforations. Note the heat tint, partially obscured by the deposit mounds, along the circumferential weld.
Chemical removal of deposits and corrosion products revealed the appearance of the groove (Fig. 14.5). The crevice formed by the incompletely fused weld seam fostered the establishment of differential concentration cells (see Chap. 2). This resulted in localized corrosion and eventual perforation through the greatly thinned tube wall at the bottom of the crevice. The tubercle, which is composed of corrosion products, is a simple result of the corrosion process occurring locally within the crevice. [Pg.321]

Critical factors. The basic cause of incomplete fusion is failure to elevate the temperature of the base metal, or of the previously deposited weld metal, to the melting point. In addition, failure to flux metal oxides or other foreign substances adhering to metal surfaces properly may interfere with proper fusion. [Pg.333]

The second degree of freedom is to design-out crevices where possible, although it must be remembered that crevice corrosion can go on underneath deposits. Crevice corrosion at a butt weld with incomplete root penetration is a common case (Fig. 9.7a). Where internal inspection is not possible and crevice corrosion is recognised as likely, A"-radiography of each weld can be specified. [Pg.22]

The acid concentration of the solution must not be too great, otherwise the deposition of the copper may be incomplete or the deposit will not adhere satisfactorily to the cathode. The beneficial effect of nitrate ion is due to its depolarising action at the cathode ... [Pg.514]

Carbon deposits resulting from incomplete combustion. Sootblowers ... [Pg.756]

VI. Incomplete calcination of the metal catalyst electrode, resulting to coke deposition on the catalyst-electrode surface. [Pg.538]

Limitations of Plasma CVD. With plasma CVD, it is difficult to obtain a deposit of pure material. In most cases, desorption of by-products and other gases is incomplete because of the low temperature and these gases, particularly hydrogen, remain as inclusions in the deposit. Moreover, in the case of compounds, such as nitrides, oxides, carbides, or silicides, stoichiometry is rarely achieved. This is generally detrimental since it alters the physical properties and reduces the resistance to chemical etching and radiation attack. However in some cases, it is advantageous for instance, amorphous silicon used in solar cells has improved optoelectronic properties if hydrogen is present (see Ch. 15). [Pg.142]

Both classes of hydrocarbon occur naturally, notably in oil and coal deposits. Aromatic compounds are also products of incomplete combustion of organic compounds, and are released into the environment both by human activities, and by certain natural events, for example, forest tires and volcanic activity. [Pg.181]

The surface analyses of the Co/MgO catalyst for the steam reforming of naphthalene as a model compound of biomass tar were performed by TEM-EDS and XPS measurements. From TEM-EDS analysis, it was found that Co was supported on MgO not as particles but covering its surface in the case of 12 wt.% Co/MgO calcined at 873 K followed by reduction. XPS analysis results showed the existence of cobalt oxide on reduced catalyst, indicating that the reduction of Co/MgO by H2 was incomplete. In the steam reforming of naphthalene, film-like carbon and pyrolytic carbon were found to be deposited on the surface of catalyst by means of TPO and TEM-EDS analyses. [Pg.517]

The products of incomplete combustion may be associated with particulate matter before their discharge into the atmosphere, and these may ultimately enter the aquatic and terrestrial environments in the form of precipitation and dry deposition. It is therefore essential to ensure total destruction of the contaminants, generally by raising the temperature. The spectrum of compounds that have been examined is quite extensive, and several of them are produced by reactions between hydrocarbons and inorganic sulfur or nitrogen constituents of air. Some illustrative examples involving other types of reaction include the following ... [Pg.34]


See other pages where Incomplete deposition is mentioned: [Pg.33]    [Pg.289]    [Pg.493]    [Pg.45]    [Pg.10]    [Pg.532]    [Pg.517]    [Pg.209]    [Pg.387]    [Pg.33]    [Pg.289]    [Pg.493]    [Pg.45]    [Pg.10]    [Pg.532]    [Pg.517]    [Pg.209]    [Pg.387]    [Pg.2938]    [Pg.268]    [Pg.525]    [Pg.228]    [Pg.205]    [Pg.195]    [Pg.592]    [Pg.18]    [Pg.18]    [Pg.155]    [Pg.364]    [Pg.571]    [Pg.339]    [Pg.178]    [Pg.236]    [Pg.102]    [Pg.27]    [Pg.253]    [Pg.414]    [Pg.38]    [Pg.45]    [Pg.48]   
See also in sourсe #XX -- [ Pg.209 ]




SEARCH



Incomplete

Incompleteness

© 2024 chempedia.info