Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Immobilization Immobilized enzymes

Enzyme stability with respect to both storage time and denaturation temperature has generally been found to improve upon immobilization. Immobilized enzyme... [Pg.75]

An electrode that responds to the concentration of a substrate by reacting the substrate with an immobilized enzyme, producing an ion that can be monitored with an ion-selective electrode. [Pg.484]

Mifflin, T. E. Andriano, K. M. Robbins, W. B. Determination of Penicillin Using an Immobilized Enzyme Electrode, /. Chem. Educ. 1984, 61, 638-639. [Pg.534]

Enzyme catalysis Enzyme electrode Enzyme immobilization Enzyme immunoassay Enzyme inhibitors... [Pg.364]

Immiscible blends Immiscible liquids Immiticide Immobileliquids Immobdines Immobilized enzymes... [Pg.508]

In most cases, hoUow fibers are used as cylindrical membranes that permit selective exchange of materials across their waUs. However, they can also be used as containers to effect the controUed release of a specific material (2), or as reactors to chemically modify a permeate as it diffuses through a chemically activated hoUow-fiber waU, eg, loaded with immobilized enzyme (see Enzyme applications). [Pg.145]

Immobilized Enzymes. The immobilized enzyme electrode is the most common immobilized biopolymer sensor, consisting of a thin layer of enzyme immobilized on the surface of an electrochemical sensor as shown in Figure 6. The enzyme catalyzes a reaction that converts the target substrate into a product that is detected electrochemicaHy. The advantages of immobilized enzyme electrodes include minimal pretreatment of the sample matrix, small sample volume, and the recovery of the enzyme for repeated use (49). Several reviews and books have been pubHshed on immobilized enzyme electrodes (50—52). [Pg.102]

Fig. 6. Diagram of an immobilized enzyme electrode, where S is the substrate and P is the enzyme-bound substrate product. Fig. 6. Diagram of an immobilized enzyme electrode, where S is the substrate and P is the enzyme-bound substrate product.
The response of the immobilized enzyme electrode can be made independent of the enzyme concentration by using a large excess of enzyme at the electrode surface. The electrode response is limited by the mass transport of the substrate. Using an excess of enzyme often results in longer electrode lifetimes, increased linear range, reduced susceptibiUty to pH, temperature, and interfering species (58,59). At low enzyme concentrations the electrode response is governed by the kinetics of the enzyme reaction. [Pg.103]

Multienzyme Electrodes. Coupling the reactions of two or more immobilized enzymes increases the number of analytes that can be measured. An electro-inactive component can be converted by an enzyme to a substrate that is subsequentiy converted by a second enzyme to form a detectable end product (57). For example, a maltose [69-79-4] sensor uses the enzymes glucoamylase and glucose oxidase, which convert... [Pg.103]

The resonant frequency of the crystal is inversely proportional to the mass of the Pmssian blue coating. When the immobilized enzyme acts on its substrate, glucose-6-phosphate [54010-71-8] (4), electrons are transferred to the Pmssian blue. In order to maintain electrical neutraUty, cations... [Pg.109]

The dye is excited by light suppHed through the optical fiber (see Fiber optics), and its fluorescence monitored, also via the optical fiber. Because molecular oxygen, O2, quenches the fluorescence of the dyes employed, the iatensity of the fluorescence is related to the concentration of O2 at the surface of the optical fiber. Any glucose present ia the test solution reduces the local O2 concentration because of the immobilized enzyme resulting ia an iacrease ia fluorescence iatensity. This biosensor has a detection limit for glucose of approximately 100 ]lM , response times are on the order of a miaute. [Pg.110]

In the early years of the chemical industry, use of biological agents centered on fermentation (qv) techniques for the production of food products, eg, vinegar (qv), cheeses (see Milk and milk products), beer (qv), and of simple organic compounds such as acetone (qv), ethanol (qv), and the butyl alcohols (qv). By the middle of the twentieth century, most simple organic chemicals were produced synthetically. Fermentation was used for food products and for more complex substances such as pharmaceuticals (qv) (see also Antibiotics). Moreover, supports were developed to immobilize enzymes for use in industrial processes such as the hydrolysis of starch (qv) (see Enzyme applications). [Pg.113]

The formulation of an enzyme is normally considered a way to store and transport the enzyme until its appHcation. One common exception is immobilized enzymes where formulation is an active part of their appHcation. [Pg.290]

Immobilization. Enzymes, as individual water-soluble molecules, are generally efficient catalysts. In biological systems they are predorninandy intracellular or associated with cell membranes, ie, in a type of immobilized state. This enables them to perform their activity in a specific environment, be stored and protected in stable form, take part in multi-enzyme reactions, acquire cofactors, etc. Unfortunately, this optimization of enzyme use and performance in nature may not be directiy transferable to the laboratory. [Pg.291]

A significant advantage of immobilized enzymes is the total absence of catalytic activity in the product. Moreover, the degree of substrate-to-product conversion can be controlled during processing, eg, by adjusting the flow rate through a packed-bed column reactor of immobilized enzyme. [Pg.291]

Because enzymes can be intraceUularly associated with cell membranes, whole microbial cells, viable or nonviable, can be used to exploit the activity of one or more types of enzyme and cofactor regeneration, eg, alcohol production from sugar with yeast cells. Viable cells may be further stabilized by entrapment in aqueous gel beads or attached to the surface of spherical particles. Otherwise cells are usually homogenized and cross-linked with glutaraldehyde [111-30-8] to form an insoluble yet penetrable matrix. This is the method upon which the principal industrial appHcations of immobilized enzymes is based. [Pg.291]

Membrane reactors, where the enzyme is adsorbed or kept in solution on one side of an ultrafHtration membrane, provides a form of immobilized enzyme and the possibiHty of product separation. [Pg.291]

Immobilized enzyme Glucose isomerase Penicillin V acylase... [Pg.291]

The second most important group of immobilized enzymes is stiU the penicillin G and V acylases. These are used in the pharmaceutical industry to make the intermediate 6-aminopenici11anic acid [551-16-6] (6-APA), which in turn is used to manufacture semisynthetic penicillins, in particular ampicilHn [69-53-4] and amoxicillin [26787-78-0]. This is a remarkable example of how a complex chemical synthesis can be replaced with a simple enzymatic one ... [Pg.291]

When selecting a suitable feed symp, the main criteria are optimization of enzyme productivity and minimization of the formation of by-products. Typical feed symp specifications are shown in Table 5. Higher symp concentration and higher viscosity results in a reduced isomerization rate due to diffusion resistance in the pores of the immobilized enzyme. A deaeration step is desirable to remove dissolved oxygen that would otherwise iacrease the formation of by-products. The pH is adjusted to the optimum level for the productivity of the enzyme. [Pg.298]

During operation, the immobilized enzyme loses activity. Most commercial enzymes show decay as a function of time (Eig. 12). The glucose isomerase ia a reactor is usually replaced after three half-Hves, ie, when the activity has dropped to around 12.5% of the initial value. The most stable commercial glucose isomerases have half-Hves of around 200 days ia practical use. To maintain the same fmctose content ia the finished symp, the feed-flow rate is adjusted according to the actual activity of the enzyme. With only one isomerization reactor ia operation, the result would be excessive variations ia the rate of symp production. To avoid this, several reactors at different stages ia the cycle of enzyme decay are operated ia combiaation. [Pg.298]

An immobilized enzyme-carrier complex is a special case that can employ the methodology developed for evaluation of a heterogeneous cat ytic system. The enzyme complex also has external diffusional effects, pore diffusional effects, and an effectiveness factor. When carried out in aqueous solutions, heat transfer is usually good, and it is safe to assume that isothermal conditions prevail for an immobihzed enzyme complex. [Pg.2150]


See other pages where Immobilization Immobilized enzymes is mentioned: [Pg.2502]    [Pg.772]    [Pg.355]    [Pg.178]    [Pg.290]    [Pg.38]    [Pg.40]    [Pg.298]    [Pg.311]    [Pg.391]    [Pg.73]    [Pg.340]    [Pg.10]    [Pg.293]    [Pg.103]    [Pg.103]    [Pg.103]    [Pg.291]    [Pg.291]    [Pg.291]    [Pg.298]    [Pg.312]    [Pg.409]    [Pg.2129]    [Pg.2131]    [Pg.2149]    [Pg.2150]    [Pg.2150]    [Pg.2150]   
See also in sourсe #XX -- [ Pg.119 ]




SEARCH



Enzyme immobilization

Immobilized enzymes

© 2024 chempedia.info