Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Immiscibility gases

There are two principal mechanisms of enhanced oil recovery increasing volumetric sweep efficiency of the injected fluid and increasing oil displacement efficiency by the injected fluid. In both, chemicals are used to modify the properties of an injected fluid whether water, steam, a miscible gas such as CO2 or natural gas, or an immiscible gas, usually nitrogen. Poor reservoir volumetric sweep efficiency is the greatest obstacle to increasing oil recovery (9). [Pg.188]

Secondary Oil Recovery The second phase of crude-oil production, in which water or an immiscible gas are injected to restore production from a depleted reservoir. See also Enhanced Oil Recovery, Primary Oil Recovery. [Pg.401]

Chemical methods of EOR are usually carried out by using water or brine as the carrier fluid. The exception is foam flooding, which also involves an immiscible gas as the driving fluid. Although various chemical methods can be used by themselves, studies have shown synergism in their combined application. [Pg.885]

Immiscible gas injection (dry gas, CO2, nitrogen, alternating or co-injection with water)... [Pg.4]

The presence of an immiscible gas phase in the analytical path results in the bubble pattern shown in Fig. 5.2. Consequently, establishment of... [Pg.149]

Water injection from seawater or fresh water sources contributes to the souring of oil fields with H2S usually resulting in an increase in the corrosion rate, which sometimes requires a complete change in corrosion strategy. These water sources may necessitate biocide injection and will require deaeration to avoid introducing a new corrosion mechanism into the existing system. Tertiary recovery techniques are often based on miscible and immiscible gas floods. These gas floods invariably contain a... [Pg.171]

A consequence of the use of advanced technology in oil production from a reservoir results in increase in the corrosivity of the oil production environment. The extent of corrosion increases because (i) oil, water, and gas are present in the field. Seawater or fresh water is injected downhole to drive oil out of formation. As time passes, the amount of water to the amount of oil increases and the degree of internal corrosion increases. Water injection from seawater or fresh water sources causes souring of oilfields with H2S and increases in corrosion rate. These water sources require biocide injection and deaeration to avoid the introduction of new corrosion pathways into the existing system. Tertiary recovery techniques involve miscible and immiscible gas floods that may contain as much as 100% CO2. This leads to high corrosivity of the fluids. [Pg.290]

Immiscible gas-liquid and liquid-liquid mixtures form droplet-based flows over a wide range... [Pg.2866]

Flotation. Flotation is a gravity separation process which exploits differences in the surface properties of particles. Gas bubbles are generated in a liquid and become attached to solid particles or immiscible liquid droplets, causing the particles or droplets to rise to the surface. This is used to separate mixtures of solid-solid particles and liquid-liquid mixtures of finely divided immiscible droplets. It is an important technique in mineral processing, where it is used to separate different types of ore. [Pg.70]

The preceding definitions have been directed toward the treatment of the solid-liquid-gas contact angle. It is also quite possible to have a solid-liquid-liquid contact angle where two mutually immiscible liquids are involved. The same relationships apply, only now more care must be taken to specify the extent of mutual saturations. Thus for a solid and liquids A and B, Young s equation becomes... [Pg.354]

Steam Distillation. Distillation of a Pair of Immiscible Liquids. Steam distillation is a method for the isolation and purification of substances. It is applicable to liquids which are usually regarded as completely immiscible or to liquids which are miscible to only a very limited extent. In the following discussion it will be assumed that the liquids are completely immiscible. The saturated vapours of such completely immiscible liquids follow Dalton s law of partial pressures (1801), which may be stated when two or more gases or vapoms which do not react chemically with one another are mixed at constant temperature each gas exerts the same pressure as if it alone were present and that... [Pg.12]

Because of the relative instabiUty of FeO, the reduction to metallic Fe occurs at a much lower temperature and appreciable CO2 is present in the product gas. The high temperature required for the reaction of MnO and C results in the formation of essentially pure CO the partial pressures of CO2 and Mn are <0.1 kPa (1 X 10 atm). The product of this reaction is manganese carbide (7 3) [12076-37-8J, Mn C, containing 8.56% carbon. Assuming immiscibility of the metal and carbide, Mn should be obtainable by the reaction of MnO and Mn C at 1607°C. However, at this temperature and activity of Mn, the partial pressure of Mn vapor is approximately 10 kPa (0.1 atm) which would lead to large manganese losses. [Pg.490]

Both alkanes and gas oil can be used as carbon and energy sources. Commercially, Candida tropicalis and Candida lipolytica have been used (35,36). The fermentation contains two immiscible Hquid phases (the alkane and the water) the semisoHd yeast and the gaseous air phase. In contrast to yeasts grown on carbohydrates, where maximum yields are 50%, yeasts grown on alkanes generally give yields of 95—105% based on the weight of the alkane. [Pg.393]

An impeller with a high fluid head is one with high peripheral velocity and discharge velocity. Such impellers are useful for (I) rapid reduction of concentration differences in the impeller discharge stream (rapid mixing), (2) production of large interfacial area and small droplets in gas-hquid and immiscible-liquid systems, (3) sohds deagglomeration, and (4) promotion of mass transfer between phases. [Pg.1629]

Solid-gas Mixing of immiscible liquids Pneumatic conveying of solids Fluidized beds... [Pg.185]

The efficiencies which may be obtained can consequently be calculated by simple stoichiometry from the equilibrium data. In the ease of countercurrent-packed columns, the solute can theoretically be completely extracted, but equilibrium is not always reached because of the poorer contact between the phases. The rate of solute transfer between phases governs the operation, and the analytical treatment of the performance of such equipment follows closely the methods employed for gas absorption. In the ease of two immiscible liquids, the equilibrium concentrations of a third component in each of the two phases are ordinarily related as follows ... [Pg.326]

The term three-phase fluidization requires some explanation, as it can be used to describe a variety of rather different operations. The three phases are gas, liquid and particulate solids, although other variations such as two immiscible liquids and particulate solids may exist in special applications. As in the case of a fixed-bed operation, both co-current and counter- current gas-liquid flow are permissible and, for each of these, both bubble flow, in which the liquid is the continuous phase and the gas dispersed, and trickle flow, in which the gas forms a continuous phase and the liquid is more or less dispersed, takes place. A well established device for countercurrent trickle flow, in which low-density solid spheres are fluidized by an upward current of gas and irrigated by a downward flow of liquid, is variously known as the turbulent bed, mobile bed and fluidized packing contactor, or the turbulent contact absorber when it is specifically used for gas absorption and/or dust removal. Still another variation is a three-phase spouted bed contactor. [Pg.486]

An important mixing operation involves bringing different molecular species together to obtain a chemical reaction. The components may be miscible liquids, immiscible liquids, solid particles and a liquid, a gas and a liquid, a gas and solid particles, or two gases. In some cases, temperature differences exist between an equipment surface and the bulk fluid, or between the suspended particles and the continuous phase fluid. The same mechanisms that enhance mass transfer by reducing the film thickness are used to promote heat transfer by increasing the temperature gradient in the film. These mechanisms are bulk flow, eddy diffusion, and molecular diffusion. The performance of equipment in which heat transfer occurs is expressed in terms of forced convective heat transfer coefficients. [Pg.553]


See other pages where Immiscibility gases is mentioned: [Pg.235]    [Pg.170]    [Pg.151]    [Pg.1740]    [Pg.1742]    [Pg.311]    [Pg.9]    [Pg.204]    [Pg.290]    [Pg.152]    [Pg.396]    [Pg.234]    [Pg.204]    [Pg.24]    [Pg.699]    [Pg.708]    [Pg.1441]    [Pg.1623]    [Pg.107]    [Pg.439]    [Pg.430]    [Pg.435]    [Pg.453]    [Pg.453]    [Pg.423]    [Pg.288]    [Pg.101]   
See also in sourсe #XX -- [ Pg.400 ]




SEARCH



Concise discussion on reaction equilibria involving gases together with immiscible liquids and solids

Immiscibility

Immiscibility Immiscible

Immiscible

Preliminary discussion on reaction equilibria involving gases together with immiscible liquids and solids

© 2024 chempedia.info