Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxyl addition reactions

Recently, FTIR spectroscopy studies have been reported which support the above observations. Moacanin et al 3) concluded that two reactions dominate the TC3fDA/DDS cure epoxy-primary amine addition is the principal reaction occurring during the early stage of cure followed by the epoxy-hydroxyl addition reaction. Indeed they find that the rate of epoxy-hydroxyl addition is at least an order of magnitude slower than for the epoxy-primary amine reaction at 177 C. Furthermore, Morgan et al (4) report that the epoxysecondary amine addition and epoxy-epoxy homopolymerization reactions also occur at 177°C but at rates that are approximately 10 and 200 times slower, respectively, than the epoxy-primary amine react ion. [Pg.350]

Etherification. The accessible, available hydroxyl groups on the 2, 3, and 6 positions of the anhydroglucose residue are quite reactive (40) and provide sites for much of the current modification of cotton ceUulose to impart special or value-added properties. The two most common classes into which modifications fall include etherification and esterification of the cotton ceUulose hydroxyls as weU as addition reactions with certain unsaturated compounds to produce ceUulose ethers (see Cellulose, ethers). One large class of ceUulose-reactive dyestuffs in commercial use attaches to the ceUulose through an alkaH-catalyzed etherification by nucleophilic attack of the chlorotriazine moiety of the dyestuff ... [Pg.314]

The reaction course taken by photoexcited cycloalkenes in hydroxylic solvents depends on ring size. 1-Methylcyclohexene, 1-methylcycloheptene, and 1-methylcyclooc-tene all add methanol, but neither 1-methylcyclopentene nor norbomene does so. The key intermediate in the addition reactions is believed to be the highly reactive -isomer of the cycloalkene. [Pg.770]

In a further extension of this reaction Winstein and Dauben showed that the action of the methylene-transfer reagent (1) on A -cycloal-kenols, e.g., (2), proceeds by stereospecific cis addition to give the cw-cyclo-propyl carbinol (5). It was also observed that both the rate and yield of the hydroxyl-assisted reaction are increased substantially. It has been suggested that the high stereoselectivity observed in these instances is best explained by complex formation or reaction of the reagent (1) with the hydroxyl group of (2) followed by intromolecular transfer of methylene. [Pg.108]

With the success in Lewis acid-catalyzed thiol conjugate addition reactions mentioned above, we further tried to apply the J ,J -DBFOX/Ph-nickel(II) aqua complex catalyst to the catalyzed asymmetric conjugate addition reactions of hydroxyl-amines [88, 89]. However, after some preliminary examinations, we found that... [Pg.288]

A urethane is typically prepared by nucleophilic addition reaction between an alcohol and an isocyanate (R—N = C=0), so a polyurethane is prepared by reaction between a cliol and a diisocyanate. The diol is usually a low-molecular-weight polymer (MW 1000 amu) with hydroxyl end-groups the diisocyanate is often toluene-2,4-diisocyanate. [Pg.1214]

It will be recalled that one of the key operations in the synthesis of IJK ring system 86 is the intramolecular conjugate addition reaction (see 90—>89, Scheme 17b) to form ring J. In the context of compound 90, the electrophilic a,/ -unsaturated ester moiety and the potentially nucleophilic tertiary hydroxyl group reside in proximal regions of space, a circumstance that would seem to favor the desired cyclization evept (see Scheme 19). Indeed, exposure of a solution of 90 in THFto sodium hydride (1 equiv.) for one hour at 25 °C results in the formation of compound 89 in 92% yield. In... [Pg.764]

The addition of allylboronates 1 to the chiral oxime 2 results in the formation of a hydroxyl-amine. This is a general method for the subsequent reductive generation of primary homoallyl-amines, but with poor diastereoselectivity in the case of 3 and 4. A diastereomeric ratio of 90 10 is achieved in the addition reaction, using the chiral allylboronate 59 (double stcrcodifferenti-ation). [Pg.752]

Reactions of some furanoid glycals having free 3-hydroxyl (518 and 522) and 3-0-benzyl groups (520 and 524) with AcOF gave different products in the former and the latter groups of compounds, respectively, addition reaction occurred mainly from the same (to give 519 and 523, respectively) and from the opposite sides [to give 521 and 525 (with 526), respectively] of the substituents at C-3 (see Table V). [Pg.181]

Note also the stereochemistry. In some cases, two new stereogenic centers are formed. The hydroxyl group and any C(2) substituent on the enolate can be in a syn or anti relationship. For many aldol addition reactions, the stereochemical outcome of the reaction can be predicted and analyzed on the basis of the detailed mechanism of the reaction. Entry 1 is a mixed ketone-aldehyde aldol addition carried out by kinetic formation of the less-substituted ketone enolate. Entries 2 to 4 are similar reactions but with more highly substituted reactants. Entries 5 and 6 involve boron enolates, which are discussed in Section 2.1.2.2. Entry 7 shows the formation of a boron enolate of an amide reactions of this type are considered in Section 2.1.3. Entries 8 to 10 show titanium, tin, and zirconium enolates and are discussed in Section 2.1.2.3. [Pg.67]

Scheme 2.2 illustrates several examples of the Mukaiyama aldol reaction. Entries 1 to 3 are cases of addition reactions with silyl enol ethers as the nucleophile and TiCl4 as the Lewis acid. Entry 2 demonstrates steric approach control with respect to the silyl enol ether, but in this case the relative configuration of the hydroxyl group was not assigned. Entry 4 shows a fully substituted silyl enol ether. The favored product places the larger C(2) substituent syn to the hydroxy group. Entry 5 uses a silyl ketene thioacetal. This reaction proceeds through an open TS and favors the anti product. [Pg.86]

Cyanide ion acts as a carbon nucleophile in the conjugate addition reaction. The pK of HCN is 9.3, so addition in hydroxylic solvents is feasible. An alcoholic solution of potassium or sodium cyanide is suitable for simple compounds. [Pg.198]

Hydroxyl radicals react with C3H6 by the following addition reactions to form hydroxyl-alkyl radicals ... [Pg.380]

In addition to a well-known NADPH-dependent hydroxylation mechanism (Reaction (2)), cytochrome P-450 is able to catalyze the oxidation of substrates by peroxygenase mechanism (Reaction (8)) where XOOH presents the peroxy compound acting as the oxygen donor. [Pg.770]

In selective etherification, it is important to distinguish between reversible and irreversible reactions. The former class comprises etherifications with dimethyl sulfate, halogen compounds, oxirane (ethylene oxide), and diazoalkanes, whereas the latter class involves addition reactions of the Michael type of hydroxyl groups to activated alkenes. In this Section, irreversible and reversible reactions are described separately, and a further distinction is made in the former group by placing the rather specialized, diazoalkane-based alkylations in a separate subsection. [Pg.51]

An expedient and fully stereocontrolled synthesis of epothilones A (435, R = H) and B (435, R = Me) has been realized (473, 474). The routes described, involve an extensive study of nitrile oxide cycloadditions, as substitutes for aldol addition reactions, leading to the realization of a highly convergent synthesis, based on the Kanemasa hydroxyl-directed nitrile oxide cycloaddition. [Pg.95]

In both interaction mechanisms with water molecules as proposed by Eq. (2.3) and Eq. (2.4), hydroxyl groups are formed on the surface. These hydroxyl groups are additional reaction partners for CO. Starting from Eq. (2.4) and considering experimental findings, the reaction can be expressed as [86,87] ... [Pg.14]

Combination of an Ri, radical with an Ra radical yields the single p-qninone methide dimer (V). Here the quinone methide cannot become stabilized by an intramolecnlar addition reaction. Instead, nucleophilic attack of its y-carbon atom occurs by a hydroxyl ion from the medium, for example aromatization and protonation of the phenoxido ion thus formed give rise to guaiacylglycerol- 3-coniferyl ether (VI), again in racemic form dc-spite its two asymmetric carbon atoms. Since attack by the extraneous hydroxyl ion can occur on either side of C-y of the p-quinone methide (V), complete equilibration of the specific hydrogens from the original conifcryl alcohol moiety in the lower half of (V) presumably occurs (sec formulae on p. 131). [Pg.126]


See other pages where Hydroxyl addition reactions is mentioned: [Pg.350]    [Pg.125]    [Pg.138]    [Pg.350]    [Pg.125]    [Pg.138]    [Pg.72]    [Pg.999]    [Pg.222]    [Pg.17]    [Pg.59]    [Pg.176]    [Pg.556]    [Pg.701]    [Pg.759]    [Pg.762]    [Pg.769]    [Pg.777]    [Pg.406]    [Pg.62]    [Pg.648]    [Pg.255]    [Pg.263]    [Pg.359]    [Pg.86]    [Pg.241]    [Pg.25]    [Pg.26]    [Pg.195]    [Pg.788]    [Pg.272]    [Pg.383]    [Pg.308]    [Pg.497]    [Pg.962]   
See also in sourсe #XX -- [ Pg.218 ]

See also in sourсe #XX -- [ Pg.142 , Pg.143 ]




SEARCH



Addition hydroxylation

Hydroxyl, reactions

Hydroxylation reaction

© 2024 chempedia.info