Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxide reaction + sulphones

The Schotten-Baumann reaction may also be carried out, using, for example, benzene sulphonyl chloride, CeH,SO,Cl (. e., the acid chloride of benzene sulphonic acid, C H5SOjOH) in place of benzoyl chloride, and similar deri a-tives are obtained. Thus when phenol is dissolved in an excess of 10% sodium hydroxide solution, and then shaken with a small excess of benzene sulphonyl... [Pg.247]

SULPHONATION OF AROMATIC AMINES If aniline is treated with excess of concentrated sulphuric acid and the resulting mixture, which contains aniline sulphate, is heated at 180° until a test portion when mixed with sodium hydroxide solution no longer liberates aniline, p-aminobenzenesulphonic acid or sulphanilic acid is formed this separates as the dihydrate upon pouring the cooled mixture into water. The reaction prohahly proceeds as follows ... [Pg.585]

Dissolve 1 0 g. of the compound in 5 ml. of dry chloroform in a dry test-tuhe, cool to 0°, and add dropwise 5g. (2-8 ml.) of redistilled chloro-sulphonic acid. When the evolution of hydrogen chloride subsides, allow the reaction mixture to stand at room temperature for 20 minutes. Pour the contents of the test-tube cautiously on to 25 g. of crushed ice contained in a small beaker. Separate the chloroform layer and wash it with a httle cold water. Add the chloroform layer, with stirring, to 10 ml. of concentrated ammonia solution. After 10 minutes, evaporate the chloroform on a water bath, cool the residue and treat it with 5 ml. of 10 per cent, sodium hydroxide solution the sulphonamide dissolves as the sodium derivative, RO.CgH4.SO,NHNa. Filter the solution to remove any insoluble matter (sulphone, etc.), acidify the filtrate with dilute hydrochloric acid, and cool in ice water. Collect the sulphonamide and recrystallise it from dilute alcohol. [Pg.672]

A number of basic materials such as hydroxides, hydrides and amides of alkaline and alkaline earth metals and metal oxides such as zinc oxide and antimony oxide are useful catalysts for the reaction. Acid ester-exchange catalysts such as boric acid, p-toluene sulphonic acid and zinc chloride are less... [Pg.559]

Today the sulphonation route is somewhat uneconomic and largely replaced by newer routes. Processes involving chlorination, such as the Raschig process, are used on a large scale commercially. A vapour phase reaction between benzene and hydrocholoric acid is carried out in the presence of catalysts such as an aluminium hydroxide-copper salt complex. Monochlorobenzene is formed and this is hydrolysed to phenol with water in the presence of catalysts at about 450°C, at the same time regenerating the hydrochloric acid. The phenol formed is extracted with benzene, separated from the latter by fractional distillation and purified by vacuum distillation. In recent years developments in this process have reduced the amount of by-product dichlorobenzene formed and also considerably increased the output rates. [Pg.636]

Oxidation of methyl perfluoroalkyl sulphones with refluxing aqueous potassium permanganate produced the perfluorinated alkanesulphonic acid in 85% yield as the potassium salt (equation 86). On the other hand, attempted oxidation with sodium hypochlorite caused only chlorine substitution (equation 87). Reaction of the new sulphone with aqueous hydroxide gave the same perfluoroalkane sulphonic acid salt (equation 88). [Pg.993]

It is intriguing to note that this reaction scheme for the reduction of a sulphone to a sulphide leads to the same reaction stoichiometry as proposed originally by Bordwell in 1951. Which of the three reaction pathways predominates will depend on the relative activation barriers for each process in any given molecule. All are known. Process (1) is preferred in somewhat strained cyclic sulphones (equations 22 and 24), process (2) occurs in the strained naphtho[l, 8-hc]thiete 1,1-dioxide, 2, cleavage of which leads to a reasonably stabilized aryl carbanion (equation 29) and process (3) occurs in unstrained sulphones, as outlined in equations (26) to (28). Examples of other nucleophiles attacking strained sulphones are in fact known. For instance, the very strained sulphone, 2, is cleaved by hydride from LAH, by methyllithium in ether at 20°, by sodium hydroxide in refluxing aqueous dioxane, and by lithium anilide in ether/THF at room temperature. In each case, the product resulted from a nucleophilic attack at the sulphonyl sulphur atom. Other examples of this process include the attack of hydroxide ion on highly strained thiirene S, S-dioxides , and an attack on norbornadienyl sulphone by methyllithium in ice-cold THF . ... [Pg.939]

Treatment of 1-pyridinium sulphonate with sodium or potassium hydroxide generates sodium or potassium salts of 5-hydroxy-2,4-pentadienal (glutaconaldehyde), which are starting materials for a variety of transformations (equation 178)171b 301. For example, the reaction of the potassium salt with a carbon electrophile has been used for the preparation of a dienol aldehyde (equation 179)mb which was an intermediate in the total synthesis of a mutagen, (S)-3-(dodeca-l,3,5,7,9-pentaenyloxy)propane-l,2-diol. [Pg.460]

Sodium hydroxide may replace potassiluu hydroxide in this preparation 150 g., together with 15 ml. of water, are required. The sulphonate is stirred in when the temperature reaches 280° and the reaction is completed at 310-320°. [Pg.668]

A fairly general procedure, which has also been used on the industrial scale, involves heating the alkali metal sulphonate with either sodium or potassium hydroxide in the presence of a small amount of water to aid the fusion process. The reaction mechanism may be formulated as a bimolecular nucleophilic addition-elimination sequence. [Pg.970]


See other pages where Hydroxide reaction + sulphones is mentioned: [Pg.365]    [Pg.289]    [Pg.99]    [Pg.354]    [Pg.254]    [Pg.110]    [Pg.612]    [Pg.939]    [Pg.993]    [Pg.327]    [Pg.110]    [Pg.612]    [Pg.993]    [Pg.375]    [Pg.201]    [Pg.283]    [Pg.375]    [Pg.379]    [Pg.123]    [Pg.121]    [Pg.508]    [Pg.50]    [Pg.58]    [Pg.50]    [Pg.58]    [Pg.147]    [Pg.312]    [Pg.637]    [Pg.640]    [Pg.654]    [Pg.665]    [Pg.673]    [Pg.674]    [Pg.688]    [Pg.689]   
See also in sourсe #XX -- [ Pg.148 , Pg.151 , Pg.152 ]




SEARCH



Hydroxides reactions

© 2024 chempedia.info