Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxamic acid oxidation

Folkers J P, Gorman C B, Laibinis P E, Buchholz S and Whitesides G M 1995 Self-assembled monolayers of long-chain hydroxamic acids on the native oxides of metals Langmuir 813-24... [Pg.2635]

Ring substituents show enhanced reactivity towards nucleophilic substitution, relative to the unoxidized systems, with substituents a to the fV-oxide showing greater reactivity than those in the /3-position. In the case of quinoxalines and phenazines the degree of labilization of a given substituent is dependent on whether the intermediate addition complex is stabilized by mesomeric interactions and this is easily predicted from valence bond considerations. 2-Chloropyrazine 1-oxide is readily converted into 2-hydroxypyrazine 1-oxide (l-hydroxy-2(l//)-pyrazinone) (55) on treatment with dilute aqueous sodium hydroxide (63G339), whereas both 2,3-dichloropyrazine and 3-chloropyrazine 1-oxide are stable under these conditions. This reaction is of particular importance in the preparation of pyrazine-based hydroxamic acids which have antibiotic properties. [Pg.172]

No simple pteridine 1- or 3-oxides are yet known. If the AT-atom of an amide function is formally oxidized, tautomerism favours the cyclic hydroxamic acid structure, as found for 3-hydroxypteridin-4-one (55JA3927), 1-hydroxylumazine (64JOC408) and 2,4-diamino-8-hydroxypteridin-7-ones (75JOC2332). [Pg.282]

Because of their higher oxidation level with respect to both amides and nitrones, hydroxamic acids have been sought from either by oxidative processes. [Pg.214]

In alieyclic systems, more emphasis has been placed on oxidation of nitrones. At least one aldonitrone of the pyrroline series (62) undergoes autoxidation to the hydroxamic acid (63). This is probably a... [Pg.215]

Ochiai and Ohta have used lead tetraacetate in benzene to convert aromatic iV-oxides (67) to the corresponding acetylated hydroxamic acids (68). Similar oxidation of quinoline and isoquinoline JV-oxides... [Pg.216]

A further type of nitro-group rearrangement gives rise to a cyclic hydroxamic ether. Noland e.t aL describe the action of cold, dilute sulfuric acid on the sodium salt of 5-nitronorbornene (98), which results in conversion to the oxazinone (101). This complex rearrangement is rationalized by the sequence 98 101 involving intermediate formation of the nitrile oxide (99) and the hydroxamic acid (100). [Pg.223]

Alicyclic hydroxamic acids undergo several specific oxidative cleavage reactions which may be of diagnostic or preparative value. In the pyrrolidine series compounds of type 66 have been oxidized with sodium hypobromite or with periodates to give y-nitroso acids (113). Ozonolysis gives the corresponding y-nitro acids. The related cyclic aldonitrone.s are also oxidized by periodate to nitroso acids, presumably via the hydroxamic acids.This periodate fission was used in the complex degradation of J -nitrones derived from aconitine. [Pg.227]

Cyclic hydroxamic acids and V-hydroxyimides are sufficiently acidic to be (9-methylated with diazomethane, although caution is necessary because complex secondary reactions may occur. N-Hydroxyisatin (105) reacted with diazomethane in acetone to give the products of ring expansion and further methylation (131, R = H or CH3). The benzalphthalimidine system (132) could not be methylated satisfactorily with diazomethane, but the V-methoxy compound was readil3 obtained by alkylation with methyl iodide and potassium carbonate in acetone. In the pyridine series, 1-benzyl-oxy and l-allyloxy-2-pyridones were formed by thermal isomeriza-tion of the corresponding 2-alkyloxypyridine V-oxides at 100°. [Pg.232]

Relatively few heteroaromatic N-oxides occur in nature. The chemistry of compounds that contain the oxidized peptide bond (the so-called hydroxamic acids) and their role in iron metabolism have been reviewed (67SC1443). Another review deals with the natural occurrence of N-oxides (68MI1). [Pg.119]

The first synthesis of a 3,5-diarylisoxazole from aryl hydroxamic acid chlorides and sodium phenyl acetylides was that effected by Weygand and Bauer in 1927. Beginning in 1946, when Quilico and Speroni showed that acid chlorides of hydroxamic acids on treatment with alkalies readily yielded nitrile oxides,numerous isoxazole and especially A -isoxazoline derivatives have been prepared. [Pg.373]

The experimental conditions for the syntheses starting from acid chlorides of hydroxamic acids and from nitrile oxides are somewhat different. In the former case the other component of the reaction is organometallic, usually an organomagnesium derivative of an acetylene or, less frequently, a sodium enolate of a /8-diketone. Nitrile oxides condense directly with unsaturated compounds. [Pg.373]

NITRILE OXIDES. Nitrile oxides are a well known class of compds represented by R.C N- 0, and are usually prepd by treating hydroxamic acid chlorides with a mild alkali, thus eliminating HQ (Ref 2). Wieland (Refs 1 3) was responsible for the first isolation of free nitrile oxides. These compds are somewhat unstable, showing a marked tendency to dimerize to (he corresponding furoxanes (1,3-dipolar addition) (Refs 2 3). The nitrile oxides add to a considerable number of carbenes, as benzonitrUe oxide (for example) to a large number of olefins in ether at 20° (Ref 3)... [Pg.288]

The intramolecular /zetero-Diels-Alder reactions of 4-O-protected acyl-nitroso compounds 81, generated in situ from hydroxamic acids 80 by periodate oxidation, were investigated under various conditions in order to obtain the best endo/exo ratio of adducts 82 and 83 [65h] (Table 4.15). The endo adducts are key intermediates for the synthesis of optically active swainsonine [66a] and pumiliotoxin [66b]. The use of CDs in aqueous medium improves the reaction yield and selectivity with respect to organic solvents. [Pg.171]

N-Acylnitroso compounds 4 are generated in situ by periodate oxidation of hydroxamic acids 3 and react with 1,3-dienes (e.g. butadiene) to give 1,2-oxazines 5 (Scheme 6.3). The periodate oxidation of 4-O-protected homo-chiral hydroxamic acid 6 occurs in water in heterogeneous phase at 0°C, and the N-acylnitroso compound 7 that is generated immediately cyclizes to cis and tranx-l,2-oxazinolactams (Scheme 6.4) [17a, b]. When the cycloaddition is carried out in CHCI3 solution, the reaction is poorly diastereo-selective. In water, a considerable enhancement in favor of the trans adduct is observed. [Pg.257]

On treatment of trialkylsilyl nitronates 1043 with MeLi, LiBr, or BuLi in THF the resulting nitrile oxide intermediates 1044 afford, in dilute THF solution (R=Me) the ketoximes 1045 in ca 50-60% yield, whereas in concentrated THF solution the O-silylated hydroxamic acids 1046 are obtained as major products [144] (Scheme 7.35). Analogously, the silyl nitronate 1047 reacts with the 2,3,4,6-tetra-O-acetyl-/ -D-glucopyranosyl thiol/triethylamine mixture to afford, via the thiohydroxi-mate 1048, in high yield, a mixture of oximes 1049 which are intermediates in the synthesis of glucosinolate [145] (Scheme 7.35). [Pg.173]

The hetero-Diels-Alder reaction has also utilized dienophiles in which both reactive centers are heteroatoms. Kibayashi reported that the intramolecular hetero-Diels-Alder cycloaddition of chiral acylnitroso compounds, generated in situ from periodate oxidation of the precursor hydroxamic acid, showed a marked enhancement of the trans-selectivity in an aqueous medium compared with the selectivity in nonaqueous conditions (Eq. 12.55).125 The reaction was readily applied to the total synthesis of (—)-pumiliotoxin C (Figure 12.5).126... [Pg.405]

Starting with 2-hydroxycarbohydroxamic acids and ImSOIm, 3-alkoxy-1,2,3-oxa-thiazolidine-4-one 2-oxides or l-alkoxy-3-arylindoline-2-ones can be obtained depending on the substituents at C-2 of the hydroxamic acid [U91... [Pg.191]

An intramolecular hetero-Diels-Alder reaction of enantiomerically pure iV-acyl nitroso derivatives 78, prepared from hydroxamic acids 77 by oxidation on treatment with Pr4NI04 in an aqueous medium, afforded a mixture of diastereomeric pyrido[l,2-A][l,2]oxazin-8-ones 79 and 80 (Scheme 5) <1996J(P1)1113, 20000L2955,... [Pg.92]

Hydrogenation of Quinolines Under Water Gas Shift Conditions and Oxidation of 1,2,3,4-Tetrahydro-quinolines to Hydroxamic Acids 6-Methoxy-1,2,3,4-tetrahydroquinoline and 1-Hydroxy-6-methoxy-3,4-dihydroquinolin-2(1 H)-one. [Pg.123]

Nitrile oxides generated under neutral conditions by thermal fragmentation of nitrolic acids 32, were trapped in situ with alkenes to afford isoxazolines 33 in 53-97% yields <00TL1191>. Nitrile oxides were also produced by treating O-silylated hydroxamic acids 34 with triflic anhydride and TEA . ... [Pg.219]

Dehydration of O-silylated hydroxamic acids is used as a general method in the synthesis of nitrile oxides (95) in the presence of trilluoromethanesulfonic anhydride and triethylamine. [Pg.11]

The use of lead tetraacetate as an oxidant gives O-acetyl derivatives of the corresponding hydroxamic acids (475, 476, 506). [Pg.215]

The formation of the latter compounds can be attributed to the result of the direct attack of the nucleophile R on the a- or p-carbon atoms of SENAs after elimination of the corresponding protons. However, it is most likely that the reaction proceeds through nitrile oxides or conjugated nitrosoalkenes (see Scheme 3.93). This interpretation is evidenced by generation of silyl esters of hydroxamic acids R CONHOSi as by-products. The reactions with more saturated solutions give the latter compounds as the major products. [Pg.521]

Acyl nitroso compounds (3, Scheme 7.2) contain a nitroso group (-N=0) directly attached to a carbonyl carbon. Oxidation of an N-acyl hydroxylamine derivative provides the most direct method for the preparation of acyl C-nitroso compounds [10]. Treatment of hydroxamic acids, N-hydroxy carbamates or N-hydroxyureas with sodium periodate or tetra-alkyl ammonium periodate salts results in the formation of the corresponding acyl nitroso species (Scheme 7.2) [11-14]. Other oxidants including the Dess-Martin periodinane and both ruthenium (II) and iridium (I) based species efficiently convert N-acyl hydroxylamines to the corresponding acyl nitroso compounds [15-18]. The Swern oxidation also provides a useful alternative procedure for the oxidative preparation of acyl nitroso species [19]. Horseradish peroxidase (HRP) catalyzed oxidation of N-hydroxyurea with hydrogen peroxide forms an acyl nitroso species, which can be trapped with 1, 3-cyclohexanone, giving evidence of the formation of these species with enzymatic oxidants [20]. [Pg.179]


See other pages where Hydroxamic acid oxidation is mentioned: [Pg.192]    [Pg.223]    [Pg.319]    [Pg.238]    [Pg.244]    [Pg.215]    [Pg.216]    [Pg.234]    [Pg.372]    [Pg.229]    [Pg.230]    [Pg.243]    [Pg.254]    [Pg.92]    [Pg.91]    [Pg.182]    [Pg.137]    [Pg.215]    [Pg.206]    [Pg.214]    [Pg.135]   


SEARCH



Hydroxamate

Hydroxamates

Hydroxamic acid

© 2024 chempedia.info