Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrophobic natural products

Hydrophobic Natural Products Polyunsaturated fatty acids, sterols, vitamins, and carotenoids, for example, that are present in plant tissues. These... [Pg.532]

The first disclosed natural product was cerulenin (15), an irreversible inhibitor of FabB. This hydrophobic epoxide locates itself in the hydro-phobic groove of the acyl site and reacts covalently with the active site cysteine [26]. However, 15 was also found to inhibit eukaryotic fatty acid synthase. [Pg.301]

The main effect of MW irradiation on the graphite- and charcoal-supported catalysts is to reduce the average temperature required for the reaction to occur. The authors believe this is the result of hot spots formed within the catalyst bed (Sect. 7.4.2). Graphite-supported catalysts, moreover, seem to be more selective than the equivalent charcoal-supported catalysts, especially under the action of MW irradiation - 83.6-97.7% compared with 68.4-86.3%. This might be because of the hydrophobic nature of the graphite which directs the reaction away from the production of water by dehydration of the alcohol. [Pg.227]

Crystal structures of a histone deacetylase-like protein (HDLP) and HDAC8 have confirmed a general pharmacophore model for HDAC inhibitors, comprising a cap joined by a hydrophobic linker to a zinc-binding group (ZBG). This model is exemplified by SAHA and the natural product HDACi Trichostatin A (TSA) 2. [Pg.338]

As in the other -omics, analyses may be directed at a specific metabolite, at all metabolites in a given system in a shot-gun approach, or at accessible groups of molecules in profiling experiments. In that also the technology varies. In addition, the chemistry of different metabolites is very heterogeneous since it involves hydrophobic lipids, hydrophilic carbohydrates, ionic inorganic species, and other secondary natural products and already the choice of solvent in metabolite extraction dictates which types of molecules will be present (Fig. 10.8). Therefore, total metabolome profiling is not possible, because no analytical method will be able to accommodate all the different molecule classes at once. [Pg.252]

Mannich and related readions provide one of the most fundamental and useful methods for the synthesis of p-amino carbonyl compounds, which constitute various pharmaceuticals, natural products, and versatile synthetic intermediates.1271 Conventional protocols for three-component Mannich-type readions of aldehydes, amines, and ketones in organic solvents indude some severe side reactions and have some substrate limitations, espedally for enolizable aliphatic aldehydes. The dired synthesis of P-amino ketones from aldehydes, amines, and silyl enolates under mild conditions is desirable from a synthetic point of view. Our working hypothesis was that aldehydes could read with amines in a hydro-phobic reaction fidd created in water in the presence of a catalytic amount of a metal triflate and a surfactant to produce imines, which could then read with hydrophobic silyl enolates. [Pg.10]

Phenylalanine (Phe or F) (2-amino-3-phenyl-propanoic acid) is a neutral, aromatic amino acid with the formula HOOCCH(NH2)CH2C6H5. It is classified as nonpolar because of the hydrophobic nature of the benzyl side chain. Tyr and Phe play a significant role not only in protein structure but also as important precursors for thyroid and adrenocortical hormones as well as in the synthesis of neurotransmitters such as dopamine and noradrenaline. The genetic disorder phenylketonuria (PKU) is the inability to metabolize Phe. This is caused by a deficiency of phenylalanine hydroxylase with the result that there is an accumulation of Phe in body fluids. Individuals with this disorder are known as phenylketonurics and must abstain from consumption of Phe. A nonfood source of Phe is the artificial sweetener aspartame (L-aspartyl-L-phenylalanine methyl ester), which is metabolized by the body into several by-products including Phe. The side chain of Phe is immune from side reactions, but during catalytic hydrogenations the aromatic ring can be saturated and converted into a hexahydrophenylalanine residue. ... [Pg.673]

A popular theory with azo materials is that their degradation products are always aromatic amines, like azo dyes. Ueda and co-workers observed that the azo bonds in segmented polyurethenes were reduced to hydrazo intermediates after incubation with human feces, since no decrease in the molecular weight was observed [73]. It was then theorized that drug release from pellets coated with these azo polymers was due to both a conformational change and a breakdown of the film structure. Other studies also concluded that the polymers were reduced to hydrazo intermediates or were completely degraded to aromatic amines depending upon their hydrophilic/ hydrophobic nature. [Pg.51]

More complex structures, often related to natural products are prepared by organic synthesis. Among them can be mentioned (f )-3-hydroxytetradecanoic acid (the double-tail hydrophobic moiety of lipid A), sphingosine derivatives related to the ceramides or 1,2- and l,3-dialkyl(acyl)glycerols related to glyco-glycerolipids, glycerophospholipids, and GPI anchors of membrane proteins. The preparations of the above derivatives were reported several years ago but some improvements have been published more recently. [Pg.287]

For the study of polyprenyl glycosyl phosphates as intermediates in the synthesis of complex glycans, several techniques have been developed, and these have been described elsewhere in detail.18 20 Two important features should be emphasized. First, the very small amounts of polyprenyl phosphates that are present in most tissues for this reason, the use of radioactive techniques for the detection of products is obligatory. Second, on account of the hydrophobic nature of these compounds, and as the enzymes involved in the reactions are membrane-bound, the use of detergents and organic solvents becomes necessary. [Pg.343]

Quinones are among the best-behaved organic compounds to undergo redox reactions in aqueous solutions. There are a reasonably large number of synthetic and natural products containing the quinone moiety, and many are excellent candidates for selective determination by LCEC. Unfortunately, some of the most important of these compounds are extremely hydrophobic due to the presence of long hydrocarbon side chains, and are therefore quite difficult to study by reversed-phase LC. [Pg.842]


See other pages where Hydrophobic natural products is mentioned: [Pg.213]    [Pg.410]    [Pg.213]    [Pg.410]    [Pg.70]    [Pg.397]    [Pg.244]    [Pg.276]    [Pg.133]    [Pg.179]    [Pg.142]    [Pg.35]    [Pg.203]    [Pg.209]    [Pg.297]    [Pg.330]    [Pg.144]    [Pg.228]    [Pg.271]    [Pg.125]    [Pg.641]    [Pg.328]    [Pg.39]    [Pg.366]    [Pg.208]    [Pg.25]    [Pg.191]    [Pg.325]    [Pg.391]    [Pg.20]    [Pg.538]    [Pg.102]    [Pg.439]    [Pg.137]    [Pg.192]    [Pg.295]    [Pg.342]    [Pg.1775]    [Pg.112]    [Pg.83]   
See also in sourсe #XX -- [ Pg.532 ]




SEARCH



Hydrophobic nature

Hydrophobic products

Hydrophobicity, natural

© 2024 chempedia.info