Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrophobic acceleration water

The reaction of two molecules of benzaldehyde to form benzoin is generally referred to as the benzoin condensation. It is normally catalyzed by cyanide ion, although thiazolium ions will also catalyze it, as we have discussed above and shown in Fig. 1.2. The normal solvent for the benzoin condensation is ethanol, to dissolve all the components of the reaction. However, it seemed to us likely that there would be overlap of the phenyl rings in the transition state for the benzoin condensation, and thus that reaction in water could lead to hydrophobic accelerations. This proved to be the case. We saw that the rate of the cyanide-catalyzed benzoin condensation was 200-fold faster in water than in ethanol. Also, we saw that added LiCl increased the reaction rate, while added lithium perchlorate decreased it. Such salt effects are diagnostic of the presence of some acceleration by hydrophobic packing in the transition state for the reaction. [Pg.17]

Breslow immediately grasped the significance of his observation. He interpreted this discovery in terms of a hydrophobic effect Since in the Diels-Alder reaction. .. the transition state. .. brings together two nonpolar groups, one might expect that in water this reaction could be accelerated by hydrophobic interactions ". ... [Pg.19]

Tire importance of hydrophobic interactions in the aqueous acceleration is further demonstrated by a qualitative study described by Jenner on the effect of pressure on Diels-Alder reactions in water and a number of organic solvents. Invariably, the reactions in water were less accelerated by pressure than those in organic solvents, which is in line with the notion that pressure diminishes hydrophobic interactions. [Pg.22]

Breslow studied the dimerisation of cyclopentadiene and the reaction between substituted maleimides and 9-(hydroxymethyl)anthracene in alcohol-water mixtures. He successfully correlated the rate constant with the solubility of the starting materials for each Diels-Alder reaction. From these relations he estimated the change in solvent accessible surface between initial state and activated complex " . Again, Breslow completely neglects hydrogen bonding interactions, but since he only studied alcohol-water mixtures, the enforced hydrophobic interactions will dominate the behaviour. Recently, also Diels-Alder reactions in dilute salt solutions in aqueous ethanol have been studied and minor rate increases have been observed Lubineau has demonstrated that addition of sugars can induce an extra acceleration of the aqueous Diels-Alder reaction . Also the effect of surfactants on Diels-Alder reactions has been studied. This topic will be extensively reviewed in Chapter 4. [Pg.26]

Appreciating the beneficial influences of water and Lewis acids on the Diels-Alder reaction and understanding their origin, one may ask what would be the result of a combination of these two effects. If they would be additive, huge accelerations can be envisaged. But may one really expect this How does water influence the Lewis-acid catalysed reaction, and what is the influence of the Lewis acid on the enforced hydrophobic interaction and the hydrogen bonding effect These are the questions that are addressed in this chapter. [Pg.44]

Throughout this thesis reference has been made to hydrophobic effects. Enforced hydrophobic interactions are an important contributor to the acceleration of uncatalysed and also of the Lewis-acid catalysed Diels-Alder reactions which are described in this thesis. Moreover, they are likely to be involved in the beneficial effect of water on the enantioselectivity of the Lewis-acid catalysed Diels-Alder reaction, as described in Chapter 3. Because arguments related to hydrophobic effects are spread over nearly all chapters, and ideas have developed simultaneously, we summarise our insights at the end of this thesis. [Pg.165]

The rate of the Lewis-acid catalysed Diels-Alder reaction in water has been compared to that in other solvents. The results demonstrate that the expected beneficial effect of water on the Lewis-acid catalysed reaction is indeed present. However, the water-induced acceleration of the Lewis-add catalysed reaction is not as pronounced as the corresponding effect on the uncatalysed reaction. The two effects that underlie the beneficial influence of water on the uncatalysed Diels-Alder reaction, enforced hydrophobic interactions and enhanced hydrogen bonding of water to the carbonyl moiety of 1 in the activated complex, are likely to be diminished in the Lewis-acid catalysed process. Upon coordination of the Lewis-acid catalyst to the carbonyl group of the dienophile, the catalyst takes over from the hydrogen bonds an important part of the activating influence. Also the influence of enforced hydrophobic interactions is expected to be significantly reduced in the Lewis-acid catalysed Diels-Alder reaction. Obviously, the presence of the hydrophilic Lewis-acid diminished the nonpolar character of 1 in the initial state. [Pg.174]

Venturi scmbbers can be operated at 2.5 kPa (19 mm Hg) to coUect many particles coarser than 1 p.m efficiently. Smaller particles often require a pressure drop of 7.5—10 kPa (56—75 mm Hg). When most of the particulates are smaller than 0.5 p.m and are hydrophobic, venturis have been operated at pressure drops from 25 to 32.5 kPa (187—244 mm Hg). Water injection rate is typicaUy 0.67—1.4 m of Hquid per 1000 m of gas, although rates as high as 2.7 are used. Increasing water rates improves coUection efficiency. Many venturis contain louvers to vary throat cross section and pressure drop with changes in system gas flow. Venturi scmbbers can be made in various shapes with reasonably similar characteristics. Any device that causes contact of Hquid and gas at high velocity and pressure drop across an accelerating orifice wiU act much like a venturi scmbber. A flooded-disk scmbber in which the annular orifice created by the disc is equivalent to a venturi throat has been described (296). An irrigated packed fiber bed with performance similar to a... [Pg.410]

The rate acceleration imposed by 0-cyclodextrin was explained in terms of a microsolvent effect 6> The inclusion of the substrate within the hydrophobic cavity of cyclodextrin simulates the changes in solvation which accompany the transfer of the substrate from water to an organic solvent. Uekama et al.109) have analyzed the substituent effect on the alkaline hydrolysis of 7-substituted coumarins (4) in the... [Pg.86]

The hemiacetal 54 adsorbed on water-saturated silica gel gives, by MW irradiation, a 1 1 mixture of cycloadducts isolated as silyl derivatives 55 and 56. The water is probably necessary for the success of the reaction because (i) it is an efficient generator of heat in the MW process, (ii) it accelerates the cycloaddition by hydrophobic effect, and (iii) it facilitates the hemiacetal-hydroxyketone equilibrium which furnishes the dienophile moiety for the cycloaddition [42]. [Pg.163]

When a hydrophobic polymer with a physically dispersed acidic excipient is placed into an aqueous environment, water will diffuse into the polymer, dissolving the acidic excipient, and consequently the lowered pH will accelerate hydrolysis of the ortho ester bonds. The process is shown schematically in Fig. 6 (18). It is clear that the erosional behavior of the device will be determined by the relative movements of the hydration front Vj and that of the erosion front V2- If Vj > V2, the thickness of the reaction zone will gradually increase and at some point the matrix will be completely permeated with water, thus leading to an eventual bulk erosion process. On the other hand, if V2 = Vj, a surface erosion process wiU take place, and the rate of polymer erosion will be completely determined by the rate at which water intrudes into the matrix. [Pg.132]

Maldotti (96) studied the kinetics of the formation of the pyrazine-bridged Fe(II) porphyrin shish-kebab polymer by means of flash kinetic experiments. Upon irradiation of a deaerated alkaline water/ethanol solution of Fe(III) protoporphyrin IX and pyrazine with a short intense flash of light, the 2 1 Fe(II) porphyrin (pyrazine)2 complex is formed, but it immediately polymerizes with second-order kinetics. This can be monitored in the UV-Vis absorption spectrum, with the disappearance of a band at 550 nm together with the emergence of a new band due to the polymer at 800 nm. The process is accelerated by the addition of LiCl, which augments hydrophobic interactions, and is diminished by the presence of a surfactant. A shish-kebab polymer is also formed upon photoreduction of Fe(III) porphyrins in presence of piperazine or 4,4 -bipyridine ligands (97). [Pg.253]

The Diels-Alder reaction is one of the most important methods used to form cyclic structures and is one of the earliest examples of carbon-carbon bond formation reactions in aqueous media.21 Diels-Alder reactions in aqueous media were in fact first carried out in the 1930s, when the reaction was discovered,22 but no particular attention was paid to this fact until 1980, when Breslow23 made the dramatic observation that the reaction of cyclopentadiene with butenone in water (Eq. 12.1) was more than 700 times faster than the same reaction in isooctane, whereas the reaction rate in methanol is comparable to that in a hydrocarbon solvent. Such an unusual acceleration of the Diels-Alder reaction by water was attributed to the hydrophobic effect, 24 in which the hydrophobic interactions brought together the two nonpolar groups in the transition state. [Pg.376]

Density functional theory study of aqueous-phase rate acceleration and endo/exo selectivity of the butadiene and acrolein Diels-Alder reaction72 shows that approximately 50% of the rate acceleration and endo/exo selectivity is attributed to hydrogen bonding and the remainder to bulk-phase effects, including enforced hydrophobic interactions and cosolvent effects. This appears to be supported by the experimental results of Engberts where a pseudothermodynamic analysis of the rate acceleration in water relative to 1-propanol and 1-propanol-water mixtures indicates that hydrogen-bond stabilization of the polarized activated complex and the decrease of the hydrophobic surface area of the reactants during the activation process are the two main causes of the rate enhancement in water.13... [Pg.391]

An ab initio MO calculation by Jorgensen revealed enhanced hydrogen bonding of a water molecule to the transition states for the Diels-Alder reactions of cyclopentadiene with methyl vinyl ketone and acrylonitrile, which indicates that the observed rate accelerations for Diels-Alder reactions in aqueous solution arise from the hydrogenbonding effect in addition to a relatively constant hydrophobic term.7,76 Ab initio calculation using a self-consistent reaction field continuum model shows that electronic and nuclear polarization effects in solution are crucial to explain the stereoselectivity of nonsymmetrical... [Pg.391]

In the course of our investigations to develop new chiral catalysts and catalytic asymmetric reactions in water, we focused on several elements whose salts are stable and behave as Lewis acids in water. In addition to the findings of the stability and activity of Lewis adds in water related to hydration constants and exchange rate constants for substitution of inner-sphere water ligands of elements (cations) (see above), it was expected that undesired achiral side reactions would be suppressed in aqueous media and that desired enanti-oselective reactions would be accelerated in the presence of water. Moreover, besides metal chelations, other factors such as hydrogen bonds, specific solvation, and hydrophobic interactions are anticipated to increase enantioselectivities in such media. [Pg.8]

The ease of formation of hydrophobic ion pairs, and hence the rate acceleration, will be determined by the hydrophobic and electrostatic interactions between the anionic and cationic species. Lapinte and Viout (1974) found that the nucleophilic order OH- > CN > C6H50- in water was completely reversed in CTAB micelles hydrophobic phenoxide ion is activated better by the micelle. The micellar binding of phenols and phenoxides was determined by Bunton and Sepulveda (1979). Similarly, hydrophobic hydroxamates are activated much better than their hydrophilic counterparts. In the same vein, the extent of activation correlates approximately with the hydrophobic nature of aqueous aggregates as estimated by Amax of methyl orange (Table 7) and of picrate ion (Bougoin et al., 1975 Shinkai et al., 1978f Table 5). [Pg.475]


See other pages where Hydrophobic acceleration water is mentioned: [Pg.414]    [Pg.632]    [Pg.632]    [Pg.947]    [Pg.304]    [Pg.59]    [Pg.22]    [Pg.38]    [Pg.632]    [Pg.22]    [Pg.24]    [Pg.27]    [Pg.43]    [Pg.54]    [Pg.524]    [Pg.254]    [Pg.786]    [Pg.486]    [Pg.132]    [Pg.278]    [Pg.303]    [Pg.332]    [Pg.375]    [Pg.385]    [Pg.391]    [Pg.417]    [Pg.239]    [Pg.591]    [Pg.269]    [Pg.271]    [Pg.274]    [Pg.166]    [Pg.437]   
See also in sourсe #XX -- [ Pg.414 ]




SEARCH



Water hydrophobicity

© 2024 chempedia.info