Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reactions acrolein

All ab initio and solvation model calculations were carried out with the Gaussian 98 program [24], by using a 16-node SP IBM RS/6000 supercomputer [74], The discrete, continuum, and discrete-continuum solvation models are used to approximate the effect of solvent on the butadiene and acrolein Diels-Alder reaction. The... [Pg.334]

Kong S, Evanseck JD. Density functional theory study of aqueous-phase rate acceleration and endo/exo selectivity of the butadiene and acrolein Diels-Alder reaction. J Am Chem Soc 2000 122 10418-10427. [Pg.341]

Density functional theory study of aqueous-phase rate acceleration and endo/exo selectivity of the butadiene and acrolein Diels-Alder reaction shows that approximately 50% of the rate acceleration and endo/exo selectivity is attributed to hydrogen bonding and the remainder to bulk-phase effects, including enforced hydrophobic interactions and cosolvent effects. This appears to be supported by the experimental results of Engberts where a pseudothermodynamic analysis of the rate acceleration in water relative to 1-propanol and 1-propanol-water mixtures indicates that hydrogen-bond stabilization of the polarized activated complex and the decrease of the hydrophobic surface area of the reactants during the activation process are the two main causes of the rate enhancement in water. [Pg.372]

Vinyl ethers and a,P unsaturated carbonyl compounds cyclize in a hetero-Diels-Alder reaction when heated together in an autoclave with small amounts of hydroquinone added to inhibit polymerisation. Acrolein gives 3,4-dihydro-2-methoxy-2JT-pyran (234,235), which can easily be hydrolysed to glutaraldehyde (236) or hydrogenated to 1,5-pentanediol (237). With 2-meth5lene-l,3-dicarbonyl compounds the reaction is nearly quantitative (238). [Pg.115]

Diels-Alder Reactions. Acrolein may participate in Diels-Alder reactions as the dieneophile or as the diene (84—89). [Pg.127]

Acrolein a.s Dienophile. The participation of acrolein as the dienophile in Diels-Alder reactions is, in general, an exothermic process. Dienes such as cyclopentadiene and l-dieth5laniino-l,3-butadiene react rapidly with acrolein at room temperature. [Pg.127]

Several Diels-Alder reactions in which acrolein participates as the dienophile are of industrial significance. These reactions involve butadiene or substituted butadienes and yield the corresponding 1,2,5,6-tetrahydroben2aldehyde derivative (THBA) examples are given in Table 9 (90). These products have found use in the epoxy and perfume/fragrance industries. [Pg.127]

Many other acrolein derivatives produced via Diels-Alder reactions are classified as flavors and fragrances. Among those of commercial interest are lyral, (1) [31906-04-4] (91,92) andmyrac aldehyde, C 3H2oO, (2) [80450-04-0] (92,93). [Pg.127]

Production of Acrolein Dimer. Acting as both the diene and dienoplule, acrolein undergoes a Diels-Alder reaction with itself to produce acrolein dimer, 3,4-dihydro-2-formyl-2id-pyran, CgHg02 [100-73-2], At room temperature the rate of dimerization is very slow. However, at elevated temperatures and pressures the dimer may be produced in single-pass yields of 33% with selectivities greater than 95%. [Pg.128]

Other methods for the preparation of cyclohexanecarboxaldehyde include the catalytic hydrogenation of 3-cyclohexene-1-carboxaldehyde, available from the Diels-Alder reaction of butadiene and acrolein, the reduction of cyclohexanecarbonyl chloride by lithium tri-tcrt-butoxy-aluminum hydride,the reduction of iV,A -dimethylcyclohexane-carboxamide with lithium diethoxyaluminum hydride, and the oxidation of the methane-sulfonate of cyclohexylmethanol with dimethyl sulfoxide. The hydrolysis, with simultaneous decarboxylation and rearrangement, of glycidic esters derived from cyclohexanone gives cyclohexanecarboxaldehyde. [Pg.15]

Yamamoto et al. have reported a chiral helical titanium catalyst, 10, prepared from a binaphthol-derived chiral tetraol and titanium tetraisopropoxide with azeotropic removal of 2-propanol [16] (Scheme 1.22, 1.23, Table 1.9). This is one of the few catalysts which promote the Diels-Alder reaction of a-unsubstituted aldehydes such as acrolein with high enantioselectivity. Acrolein reacts not only with cyclo-pentadiene but also 1,3-cyclohexadiene and l-methoxy-l,3-cyclohexadiene to afford cycloadducts in 96, 81, and 98% ee, respectively. Another noteworthy feature of the titanium catalyst 10 is that the enantioselectivity is not greatly influenced by reaction temperature (96% ee at... [Pg.18]

The FMOs of acrolein to the left in Fig. 8.2 are basically slightly perturbed butadiene orbitals, while the FMOs of protonated acrolein resemble those of an allyl cation mixed in with a lone-pair orbital on the oxygen atom (Fig. 8.2, right). Based on the FMOs of protonated acrolein, Houk et al. [2] argued that the predominant interaction in a normal electron-demand carbo-Diels-Alder reaction is between the dienophile LUMO and diene HOMO (Fig. 8.1, left). This interaction is greatly... [Pg.303]

The carbo-Diels-Alder reaction of acrolein with butadiene (Scheme 8.1) has been the standard reaction studied by theoretical calculations in order to investigate the influence of Lewis acids on the reaction course and several papers deal with this reaction. As an extension of an ab-initio study of the carbo-Diels-Alder reaction of butadiene with acrolein [5], Houk et al. investigated the transition-state structures and the origins of selectivity of Lewis acid-catalyzed carbo-Diels-Alder reactions [6]. Four different transition-state structures were considered (Fig. 8.4). Acrolein can add either endo (N) or exo (X), in either s-cis (C) or s-trans (T), and the Lewis acid coordinates to the carbonyl in the molecular plane, either syn or anti to the alkene. [Pg.305]

Fig. 8.4 The four different transition-state structures considered for the Diels-Alder reaction of acrolein with a diene in the presence of a Lewis acid (BH3). The diene can add... Fig. 8.4 The four different transition-state structures considered for the Diels-Alder reaction of acrolein with a diene in the presence of a Lewis acid (BH3). The diene can add...
The mechanism of the carbo-Diels-Alder reaction has been a subject of controversy with respect to synchronicity or asynchronicity. With acrolein as the dieno-phile complexed to a Lewis acid, one would not expect a synchronous reaction. The C1-C6 and C4—C5 bond lengths in the NC-transition-state structure for the BF3-catalyzed reaction of acrolein with butadiene are calculated to be 2.96 A and 1.932 A, respectively [6]. The asynchronicity of the BF3-catalyzed carbo-Diels-Alder reaction is also apparent from the pyramidalization of the reacting centers C4 and C5 of NC (the short C-C bond) is pyramidalized by 11°, while Cl and C6 (the long C-C bond) are nearly planar. The lowest energy transition-state structure (NC) has the most pronounced asynchronicity, while the highest energy transition-state structure (XT) is more synchronous. [Pg.306]

An important contribution for the endo selectivity in the carho-Diels-Alder reaction is the second-order orbital interaction [1], However, no bonds are formed in the product for this interaction. For the BF3-catalyzed reaction of acrolein with butadiene the overlap population between Cl and C6 is only 0.018 in the NC-transi-tion state [6], which is substantially smaller than the interaction between C3 and O (0.031). It is also notable that the C3-0 bond distance, 2.588 A, is significant shorter than the C1-C6 bond length (2.96 A), of which the latter is the one formed experimentally. The NC-transition-state structure can also lead to formation of vinyldihydropyran, i.e. a hetero-Diels-Alder reaction has proceeded. The potential energy surface at the NC-transition-state structure is extremely flat and structure NCA (Fig. 8.6) lies on the surface-separating reactants from product [6]. [Pg.307]

The endo exo selectivity for the Lewis acid-catalyzed carbo-Diels-Alder reaction of butadiene and acrolein deserves a special attention. The relative stability of endo over exo in the transition state accounts for the selectivity in the Diels-Alder cycloadduct. The Lewis acid induces a strong polarization of the dienophile FMOs and change their energies (see Fig. 8.2) giving rise to better interactions with the diene, and for this reason, the role of the possible secondary-orbital interaction must be considered. Another possibility is the [4 + 3] interaction suggested by Singleton... [Pg.308]

A series of investigation using, e.g., semi-empirical calculations have also been performed [24]. These calculations are often used in relation with experimental investigations, as well as, e.g., the carbo-Diels-Alder reaction of acrolein with dienes. [Pg.313]

For the ordinary Diels-Alder reaction the dienophile preferentially is of the electron-poor type electron-withdrawing substituents have a rate enhancing effect. Ethylene and simple alkenes are less reactive. Substituent Z in 2 can be e.g. CHO, COR, COOH, COOR, CN, Ar, NO2, halogen, C=C. Good dienophiles are for example maleic anhydride, acrolein, acrylonitrile, dehydrobenzene, tetracya-noethylene (TCNE), acetylene dicarboxylic esters. The diene preferentially is of the electron-rich type thus it should not bear an electron-withdrawing substituent. [Pg.92]

Supported Lewis acids are an interesting class of catalysts because of their operational simplicity, filterability and reusability. The polymer-bound iron Lewis-acid 53 (Figure 3.8) has been found [52] to be active in the cycloadditions of a, S-unsaturated aldehydes with several dienes. It has been prepared from (ri -vinylcyclopentadienyl)dicarbonylmethyliron which was copolymerized with divinylbenzene and then treated with trimethylsilyltriflate followed by THF. Some results of the Diels-Alder reactions of acrolein and crotonaldehyde with isoprene (2) and 2,3-dimethylbutadiene (4) are summarized in Equation 3.13. [Pg.115]

The chiral catalyst 142 achieves selectivities through a double effect of intramolecular hydrogen binding interaction and attractive tt-tt donor-acceptor interactions in the transition state by a hydroxy aromatic group [88]. The exceptional results of some Diels-Alder reactions of cyclopentadiene with substituted acroleins catalyzed by (R)-142 are reported in Table 4.21. High enantio- and exo selectivity were always obtained. The coordination of a proton to the 2-hydroxyphenyl group with an oxygen of the adjacent B-0 bond in the nonhelical transition state should play an important role both in the exo-endo approach and in the si-re face differentiation of dienophile. [Pg.185]

Indium trichloride [30] and methylrhenium trioxide [31] catalyze the aqueous Diels-Alder reaction of acrolein and acrylates with cyclic and open-chain dienes. Some examples of the cycloaddition of methyl vinyl ketone with 1,3-cyclohexadiene are reported in Scheme 6.18. MeReOs does not give satisfactory yields for acroleins and methyl vinyl ketones with substituents at the jS-position and favors the self-Diels-Alder reaction of diene. [Pg.266]

Regioselectivities [7] and endo selectivity [8, 9] increase upon Lewis acid catalysis of Diels-Alder reactions (Scheme 9). Houk and Strozier [10] found that protonation on the carbonyl oxygen of acrolein amplifies the LUMO at the terminal and... [Pg.62]

In the same area, a (5)-tryptophan-derived oxazaborolidine including a p-tolylsulfonylamide function has been used by Corey et al. to catalyse the enantioselective Diels-Alder reaction between 2-bromoacrolein and cyclo-pentadiene to form the corresponding chiral product with an unprecedented high (> 99% ee) enantioselectivity (Scheme 5.27)." This highly efficient methodology was extended to various 2-substituted acroleins and dienes such as isoprene and furan. In addition, it was applied to develop a highly efficient total synthesis of the potent antiulcer substance, cassiol, as depicted in Scheme 5.21... [Pg.204]

Grieco utilized an aqueous intermolecular Diels-Alder reaction as the key step in forming the AB ring system of the potent cytotoxic sesquiterpene vernolepin. 87 Cycloaddition of sodium ( >3,5-hexa-dienoate with an a-substituted acrolein in water followed by direct reduction of the intermediate Diels-Alder adduct gave the desired product in 91% overall yield (Eq. 12.28). [Pg.395]

Diels-Alder reaction, of acrolein with B-butyl cyclohexenyl ether, n-butyl vinyl ether, and ethyl isopropenyl ether, 34, 30... [Pg.48]

Besides the methods discussed in Chapter 2, some quaternary stereocenters can also be conveniently constructed through the enantioselective Diels-Alder reaction of the 2-substituted acroleins 75 and 128-130. [Pg.301]

In particular, Diels-Alder adducts from the enantioselective reaction of 2-bromo-acrolein and 2-chloroacrolein with a variety of dienes are of exceptional synthetic versatility. Readers are advised to consult the review article by Corey and Guzman-Perez.54 For the purpose of quick reference, chiral ligands commonly used in Diels-Alder reactions are listed in Table 5-6. [Pg.301]

Similarly, the diethyl acetal of acrolein undergoes facile Diels-Alder reactions in the presence of triflic acid, although yields are only moderate. 2-Vinyl-l,3-dioxolane is recommended as the reagent of choice because of higher yields.2... [Pg.324]


See other pages where Diels-Alder reactions acrolein is mentioned: [Pg.181]    [Pg.181]    [Pg.13]    [Pg.22]    [Pg.47]    [Pg.254]    [Pg.303]    [Pg.306]    [Pg.308]    [Pg.308]    [Pg.309]    [Pg.80]    [Pg.100]    [Pg.118]   
See also in sourсe #XX -- [ Pg.20 ]

See also in sourсe #XX -- [ Pg.736 ]

See also in sourсe #XX -- [ Pg.20 ]

See also in sourсe #XX -- [ Pg.390 ]




SEARCH



Acrolein

Acrolein acetals Diels-Alder reactions

Acroleine

Diels-Alder reaction, of acrolein with

Diels-Alder reaction, of acrolein with ether

Diels-Alder reaction, of acrolein with methyl vinyl ketone

Diels-Alder reaction, of acrolein with vinyl ether, and ethyl isopropenyl

© 2024 chempedia.info