Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrophilic colloids, stability

For suspensions primarily stabilized by a polymeric material, it is important to carefully consider the optimal pH value of the product since certain polymer properties, especially the rheological behavior, can strongly depend on the pH of the system. For example, the viscosity of hydrophilic colloids, such as xanthan gums and colloidal microcrystalline cellulose, is known to be somewhat pH- dependent. Most disperse systems are stable over a pH range of 4-10 but may flocculate under extreme pH conditions. Therefore, each dispersion should be examined for pH stability over an adequate storage period. Any... [Pg.258]

By contrast, relatively hydrophilic particles like those made of pHEMA may maintain colloidal stability even at small size due to the repulsive effects of a water of hydration layer,... [Pg.584]

The surface of the PNIPAM-g-PEO and PNIPAM-fo-PEO aggregates is expected to be covered by hydrophilic PEO chains, which impart colloidal stability to the particle. However, some PEO is buried inside the aggregate core. Therefore, increasing mixing of the phases in the core limits core compression. This is especially true in the case of PNIPAM-g-PEO. Whereas the... [Pg.47]

In a qualitative way, colloids are stable when they are electrically charged (we will not consider here the stability of hydrophilic colloids - gelatine, starch, proteins, macromolecules, biocolloids - where stability may be enhanced by steric arrangements and the affinity of organic functional groups to water). In a physical model of colloid stability particle repulsion due to electrostatic interaction is counteracted by attraction due to van der Waal interaction. The repulsion energy depends on the surface potential and its decrease in the diffuse part of the double layer the decay of the potential with distance is a function of the ionic strength (Fig. 3.2c and Fig. [Pg.251]

The procedure chosen for the preparation of lipid complexes of AmB was nanoprecipitation. This procedure has been developed in our laboratory for a number of years and can be applied to the formulation of a number of different colloidal systems liposomes, microemulsions, polymeric nanoparticles (nanospheres and nanocapsules), complexes, and pure drug particles (14-16). Briefly, the substances of interest are dissolved in a solvent A and this solution is poured into a nonsolvent B of the substance that is miscible with the solvent A. As the solvent diffuses, the dissolved material is stranded as small particles, typically 100 to 400 nm in diameter. The solvent is usually an alcohol, acetone, or tetrahydrofuran and the nonsolvent A is usually water or aqueous buffer, with or without a hydrophilic surfactant to improve colloid stability after formation. Solvent A can be removed by evaporation under vacuum, which can also be used to concentrate the suspension. The concentration of the substance of interest in the organic solvent and the proportions of the two solvents are the main parameters influencing the final size of the particles. For liposomes, this method is similar to the ethanol injection technique proposed by Batzii and Korn in 1973 (17), which is however limited to 40 mM of lipids in ethanol and 10% of ethanol in final aqueous suspension. [Pg.95]

Citrate-capped Au NPs have been coated with a layer composed of the double hydrophilic block copolymer polyethylene oxide)-block-poly(2-(dimethylamino)eth-yl methacrylate)-SH (PEO-b-PDMA-SH) leading to core-shell, almost spherical, Au NPs of about 18 nm. The shell cross-linking of these hybrid Au NPs gives rise to high colloidal stability [122]. [Pg.157]

A current hypothesis, which is receiving considerable attention, is that one can indeed produce a surface which actively repels proteins and other macromolecules123 124, 133). The basic idea is presented in Fig. 25, which shows that a neutral hydrophilic polymer, which exhibits considerable mobility or dynamics in the aqueous phase, can actively repel macromolecules from the interface by steric exclusion and interface entropy methods. This method has been well-known and applied in the field of colloid stability for many years 120). The most effective polymer appears to be polyethylene oxide, probably because of its very high chain mobility and only modest hydrogen bonding tendencies 121 123>. [Pg.46]

In the case of more water-soluble monomers and (amphiphilic) macromonomers, the Smith-Ewart [16] expression does not satisfactorily describe the particle nucleation. The HUFT [9,10] theory, however, satisfactorily describes the polymerization behavior or the particle nucleation of such unsaturated hydrophilic and amphiphilic monomers. The HUFT approach implies that primary particles are formed in the aqueous phase by precipitation of oligomer radicals above a critical chain length. The basic principals of the HUFT theory is that formation of primary particles will take place up to a point where the rate of formation of radicals in the aqueous phase is equal to the rate of disappearance of radicals by capture of radicals by particles already formed. Stabilization of primary particles in emulsifier-free emulsion polymerization may be achieved if the monomer (or macromonomer) contains surface active groups. Besides, the charged radical fragments of initiator increases the colloidal stability of the polymer particles. [Pg.15]

The colloidal stability of polymer dispersion prepared by the emulsion copolymerization of R-(EO)n-MA was observed to increase with increasing EO number in the macromonomer [42, 96]. Thus C12-(EO)9-MA did not produce stable polymer latexes, i.e., the coagulum was observed during polymerization. This monomer, however, was efficient in the emulsion copolymerization with BzMA (see below). The C12-(EO)20-MA, however, appears to have the most suitable hydrophilic-hydrophobic balance to make stable emulsions. The relative reactivity of macromonomer slightly decreases with increasing EO number in macromonomer. The most hydrophilic macromonomer with co-methyl terminal, Cr(EO)39-MA, could not disperse the monomer so that the styrene droplets coexisted during polymerization. The maximum rate of polymerization was observed at low conversions and decreased with increasing conversion. The decrease in the rate may be attributed to the decrease of monomer content in the particles (Table 2). In the Cr(EO)39-MA/St system the macromonomer is soluble in water and styrene is located in the monomer droplets. Under such conditions the polymerization in St monomer droplets may contribute to the increase in r2 values. [Pg.42]

Adhesive interaction of one particle toward another surface is closely related to the various phenomena associated with colloid chemistry such as colloidal stability, suspension, flocculation, and so forth. For instance, solid particles in water are maintained in suspension, in other words, they may be protected against flocculation due to the van der Waals attraction, if their surfaces possess electrical charging or some protective substances such as hydrophilic... [Pg.329]

Musyanovych A, Rossmanith R, Tontsch C, Landfester K (2007) Effect of hydrophilic comonomer and surfactant type on the colloidal stability and size distribution of carboxyl-and amino-functionalized polystyrene particles prepared by miniemulsion polymerization. Langmuir 23(10) 5367-5376... [Pg.60]

Colloids are either hydrophilic (water-loving) or hydrophobic (water-hating). Hydrophilic colloids (e.g., proteins, humic substances, bacteria, viruses, as well as iron and aluminum hydrated colloids) tend to hydrate and thereby swell. This increases the viscosity of the system and favors the stability of the colloid by reducing the interparticle interactions and its tendency to settle. These colloids are stabilized more by their affinity for the solvent than by the equalizing of surface charges. Hydrophilic colloids tend to surround the hydrophobic colloids in what is known as the protective-colloid effect, which makes them both more stable. [Pg.125]


See other pages where Hydrophilic colloids, stability is mentioned: [Pg.671]    [Pg.671]    [Pg.103]    [Pg.211]    [Pg.24]    [Pg.12]    [Pg.27]    [Pg.257]    [Pg.240]    [Pg.253]    [Pg.18]    [Pg.27]    [Pg.27]    [Pg.157]    [Pg.246]    [Pg.20]    [Pg.303]    [Pg.368]    [Pg.54]    [Pg.155]    [Pg.748]    [Pg.9]    [Pg.138]    [Pg.141]    [Pg.387]    [Pg.125]    [Pg.567]    [Pg.228]    [Pg.37]    [Pg.213]    [Pg.345]    [Pg.172]    [Pg.175]    [Pg.10]    [Pg.1235]    [Pg.156]    [Pg.123]    [Pg.738]   
See also in sourсe #XX -- [ Pg.292 , Pg.293 ]




SEARCH



Colloid stability

Colloid stability, stabilization

Colloid stabilizers

Colloidal stabilization

Colloidal stabilizers

Colloidal stabilizing

Hydrophilic colloids

Stabilizers hydrophilic

© 2024 chempedia.info