Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolytic reactions, metal ions

Besides the large group of hydrolytic enzymes, metal ions are often present in enzymes, which catalyze redox processes. Nature provides a large number of oxidoreductases, which catalyze diverse reactions. Many of them are copper enzymes that use O2 as the ultimate oxidant. A prominent example for such a type-2 copper enzyme is galactose oxidase. The structure of galactose oxidase and its mechanism... [Pg.2978]

Perhaps the most extensively studied catalytic reaction in acpreous solutions is the metal-ion catalysed hydrolysis of carboxylate esters, phosphate esters , phosphate diesters, amides and nittiles". Inspired by hydrolytic metalloenzymes, a multitude of different metal-ion complexes have been prepared and analysed with respect to their hydrolytic activity. Unfortunately, the exact mechanism by which these complexes operate is not completely clarified. The most important role of the catalyst is coordination of a hydroxide ion that is acting as a nucleophile. The extent of activation of tire substrate througji coordination to the Lewis-acidic metal centre is still unclear and probably varies from one substrate to another. For monodentate substrates this interaction is not very efficient. Only a few quantitative studies have been published. Chan et al. reported an equilibrium constant for coordination of the amide carbonyl group of... [Pg.46]

Inspired by the many hydrolytically-active metallo enzymes encountered in nature, extensive studies have been performed on so-called metallo micelles. These investigations usually focus on mixed micelles of a common surfactant together with a special chelating surfactant that exhibits a high affinity for transition-metal ions. These aggregates can have remarkable catalytic effects on the hydrolysis of activated carboxylic acid esters, phosphate esters and amides. In these reactions the exact role of the metal ion is not clear and may vary from one system to another. However, there are strong indications that the major function of the metal ion is the coordination of hydroxide anion in the Stem region of the micelle where it is in the proximity of the micelle-bound substrate. The first report of catalysis of a hydrolysis reaction by me tall omi cell es stems from 1978. In the years that... [Pg.138]

As discussed earlier the whole process is a redox reaction. Selenium is reduced using sodium borohydride to give selenide ions. In the above reaction, the metal ion reacts with the polymer (PVP or PVA) solution to form the polymer-metal ion solution. Addition of the selenide ion solution to the polymer-metal ion solutions resulted in instantaneous change in the colour of the solutions from colourless to orange (PVA) and orange red (PVP). This indicates the formation of CdSe nanoparticles. The addition of the selenide solution to the polymer - metal ion solution resulted in gradual release of selenide ion (Se -) upon hydrolytic decomposition in alkaline media (equation 4). The released selenide ions then react with metal ion to form seed particles (nucleation). [Pg.174]

The ligand reaction step may occur either with the template metal still intact or may take place after removal of the metal ion from the ring. As already mentioned, many of the Schiff-base macrocycles are unstable in the absence of a coordinated metal ion. However, for such systems, it has often been possible to hydrogenate the coordinated imine functions directly. The resulting saturated ligands will not be subject to the hydrolytic degradation which occurs for the imine precursors in the absence of their metal ion. [Pg.48]

Encapsulation of a metal ion by a saturated organic framework is expected to lead to robust metal derivatives which are stable over a wide pH range and thus, for example, inhibit the hydrolysis which is characteristic of certain metal ions in aqueous solution. In this manner, the non-hydrolytic coordination chemistry of these ions in solution becomes accessible. Similarly, the redox chemistry of such encapsulated ions is of special interest, since there exists the prospect that the saturated organic shell might insulate the metal ion to a greater or lesser degree from the surrounding medium and hence markedly influence electron transfer reactions. [Pg.82]

The three rate constants for Eq. (98) correspond to the acid-catalyzed, the acid-independent and the hydrolytic paths of the dimer-monomer equilibrium, respectively, and were evaluated independently (107). The results clearly demonstrate that the complexity of the kinetic processes is due to the interplay of the hydrolytic and the complex-formation steps and is not a consequence of electron transfer reactions. In fact, the first-order decomposition of the FeS03 complex is the only redox step which contributes to the overall kinetic profiles, because subsequent reactions with the sulfite ion radical and other intermediates are considerably faster. The presence of dioxygen did not affect the kinetic traces when a large excess of the metal ion is present, confirming that either the formation of the SO5 radical (Eq. (91)) is suppressed by reaction (101), or the reactions of Fe(II) with SO and HSO5 are preferred over those of HSO3 as was predicted by Warneck and Ziajka (86). Recently, first-order formation of iron(II) was confirmed in this system (108), which supports the first possibility cited, though the other alternative can also be feasible under certain circumstances. [Pg.437]

Similar effects were observed by Stigter e< al. (185) with silica and aluminum chloride. The assumption of hydrolytic adsorption is supported by an observed increase of conductivity upon addition of silica to aluminum chloride solutions. Kautsky and Wesslau (240) observed hydrolytic adsorption of Th + ions. The reaction scheme given above is a simplification since, in reality, solutions of basic iron or aluminum salts contain polynuclear complexes. The size of the aggregates depends on pH and concentration. Chromatographic separation of various metal ions on silica gel columns was first described by Schwab and Jockers (241). The role of hydrolytic adsorption in column chromatography on silica gel was stressed by Umland and Kirchner (242). The use of this technique in analytical separations was investigated in detail by Kohlschiitter and collaborators (243-246). An application to thin-layer chromatography was described by Seiler (247). [Pg.239]

Eichhom and his co-workers have thoroughly studied the kinetics of the formation and hydrolysis of polydentate Schiff bases in the presence of various cations (9, 10, 25). The reactions are complicated by a factor not found in the absence of metal ions, i.e, the formation of metal chelate complexes stabilizes the Schiff bases thermodynamically but this factor is determined by, and varies with, the central metal ion involved. In the case of bis(2-thiophenyl)-ethylenediamine, both copper (II) and nickel(II) catalyze the hydrolytic decomposition via complex formation. The nickel (I I) is the more effective catalyst from the viewpoint of the actual rate constants. However, it requires an activation energy cf 12.5 kcal., while the corresponding reaction in the copper(II) case requires only 11.3 kcal. The values for the entropies of activation were found to be —30.0 e.u. for the nickel(II) system and — 34.7 e.u. for the copper(II) system. Studies of the rate of formation of the Schiff bases and their metal complexes (25) showed that prior coordination of one of the reactants slowed down the rate of formation of the Schiff base when the other reactant was added. Although copper (more than nickel) favored the production of the Schiff bases from the viewpoint of the thermodynamics of the overall reaction, the formation reactions were slower with copper than with nickel. The rate of hydrolysis of Schiff bases with or/Zw-aminophenols is so fast that the corresponding metal complexes cannot be isolated from solutions containing water (4). [Pg.162]

In a number of nonenzymatic reactions catalyzed by pyridoxal, a metal ion complex is formed—a combination of a multivalent metal ion such as cupric oi aluminum ion with the Schiff base formed from the combination of an amino acid and pyridoxal (I). The electrostatic effect of the metal ion, as well as the electron sink of the pyridinium ion, facilitates the removal of an a -hydrogen atom to form the tautomeric Schiff base, II. Schiff base II is capable of a number of reactions characteristic of pyridoxal systems. Since the former asymmetric center of the amino acid has lost its asymmetry, donation of a proton to that center followed by hydrolytic cleavage of the system will result in racemic amino acid. On the other hand, donation of a proton to the benzylic carbon atom followed by hydrolytic cleavage of the system will result in a transamination reaction—that is, the amino acid will be converted to a keto acid and pyridoxal will be converted to pyridoxamine. Decarboxylation of the original amino acid can occur instead of the initial loss of a proton. In either case, a pair of electrons must be absorbed by the pyridoxal system, and in each case, the electrostatic effect of the metal ion facilitates this electron movement, as well as the subsequent hydrolytic cleavage (40, 43). [Pg.36]

The ability of Pi to inhibit competitively with respect to phosphate substrates (104), while not being incorporated into protein-bound phos-phohistidine (156) or participating in glucose-6-P synthesis by reversal of the hydrolytic reaction (30), also is explainable in terms of these mechanistic concepts. As shown in (XX), Fig. 8, binding of the P to enzyme-bound metal ion, without further formation of a P-N bond with imidazole N, would explain all of these experimental observations. [Pg.591]

Not surprisingly, both manganese ions are necessary for the catalase activity of arginase, as confirmed by metal replacement experiments in a mutant arginase. Indeed, whereas the hydrolytic reaction was restored upon binding one Cd2+ ion to form a heteronuclear MnCd enzyme, catalase activity was not [111]. [Pg.393]

In addition to structure control, metal ions can act as reactive centers of proteins or enzymes. The metals can not only bind reaction partners, their special reactivity can induce chemical reaction of the substrate. Very often different redox states of the metal ions play a crucial role in the specific chemistry of the metal. Non-redox-active enzymes, e.g. some hydrolytic enzymes, often react as a result of their Lewis-acid activity [2], Binding of substrates is, however, important not only for their chemical modification but also for their transport. Oxygen transport by hemoglobin is an important example of this [3]. [Pg.46]


See other pages where Hydrolytic reactions, metal ions is mentioned: [Pg.466]    [Pg.277]    [Pg.169]    [Pg.173]    [Pg.369]    [Pg.14]    [Pg.49]    [Pg.173]    [Pg.180]    [Pg.234]    [Pg.271]    [Pg.273]    [Pg.288]    [Pg.324]    [Pg.130]    [Pg.17]    [Pg.119]    [Pg.238]    [Pg.214]    [Pg.37]    [Pg.148]    [Pg.160]    [Pg.29]    [Pg.34]    [Pg.1025]    [Pg.541]    [Pg.544]    [Pg.27]    [Pg.459]    [Pg.767]    [Pg.790]    [Pg.413]    [Pg.421]    [Pg.378]    [Pg.292]    [Pg.75]    [Pg.7]   


SEARCH



Hydrolytic

Hydrolytic reactions

© 2024 chempedia.info