Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolases group

Most cultures from Collection IBSO produce lyases L-ornithine, L-arginine, and L-lysine decarboxylases. Neuraminidase (sialidase, or mucopolysaccharide - N-acetylneuraminilhydrolase) is the enzyme of the hydrolase group. As is usual neuraminidase activity is a property of pathogenic organisms. We found for the first time that luminous bacterial cultures of the species V. harveyi possess low neuraminidase activity. It may be probably one of the factors contributing to contamination of marine animals by luminous bacteria. [Pg.96]

Enzymes with lipolytic activity belong to the carboxyl-ester hydrolase group of enzymes (cf. 2.2.6). [Pg.188]

AdeninyUiydroxypropanoic acid alkyl esters [(R,5)-AHPA esters, (30)] represent a new class of broad-spectmm antiviral agents, which are, like (3)-DHPA, targeted at SAH hydrolase (62). The free acid, (R,3)-AHPA, is only weakly active as an antiviral agent. Thus the alkyl moiety merely serves as a protecting group to faciUtate uptake of AHPA by the cells. Within the cells, the AHPA alkyl esters would be hydroly2ed to release the free acid, which should then interact with SAH hydrolase. [Pg.308]

Hydrolases represent a significant class of therapeutic enzymes [Enzyme Commission (EC) 3.1—3.11] (14) (Table 1). Another group of enzymes with pharmacological uses has budt-ia cofactors, eg, in the form of pyridoxal phosphate, flavin nucleotides, or zinc (15). The synthases, and other multisubstrate enzymes that require high energy phosphates, are seldom available for use as dmgs because the required co-substrates are either absent from the extracellular space or are present ia prohibitively low coaceatratioas. [Pg.307]

Enzymes are classified into six categories depending on the kind of reaction they catalyze, as shown in Table 26.2. Oxidoreductases catalyze oxidations and reductions hansferases catalyze the transfer of a group from one substrate to another hydrolases catalyze hydrolysis reactions of esters, amides, and related substrates lyases catalyze the elimination or addition of a small molecule such as H2O from or to a substrate isomerases catalyze isomerizalions and ligases catalyze the bonding together of two molecules, often coupled with the hydrolysis... [Pg.1041]

So far, many kinds of nucleophiles active for hydrolysis such as imidazolyl-, amino-, pyridino-, carboxyl- and thiol-groups, have been used for preparation of hydrolase models. Overberger et al.108,1091 prepared copolymers of vinylimidazole and acrylic acid 60 (PVIm AA), by which the cationic substrate, 61 (ANTI), was hydrolyzed. This kind of copolymer is considered to be a model of acetylcholinesterase. With ANTI, the rate of the copolymer catalysis was higher than that of imidazole itself in the higher values of pH, as is seen in Table 9. In this work, important contributions of the electrostatic interactions are clear. The activity of the copolymer was not as high with the negatively charged and neutral substrates. [Pg.162]

Klotz etal.U9, l2° asserted that polymers from polyethylenimine reacted with chloromethylimidazole and dodecyliodide were excellent models for hydrolase. 70 [PEI-D(10%)-Im(l 5%)] catalyzed the hydrolyses of PNPA 270 times faster than imidazole itself. The authors also found that lauroylated polyethylenimine containing hydroxamate and imidazole groups, 71 [PEI-HA(8%)-L(8%)-Im(6.6%)], had a high efficiency in hydrolyses, i. e. 310 times that of imidazole. [Pg.164]

Threonine peptidases (and some cysteine and serine peptidases) have only one active site residue, which is the N-terminus of the mature protein. Such a peptidase is known as an N-terminal nucleophile hydrolase or Ntn-hydrolase. The amino group of the N-terminal residue performs the role of the general base. The catalytic subunits of the proteasome are examples of Ntn-hydrolases. [Pg.877]

Figure 3. Mitochondrial fatty acid oxidation. Long-chain fatty acids are converted to their CoA-esters as described in the text, and their fatty-acyl-groups transferred to CoA in the matrix by the concerted action of CPT 1, the acylcarnitine/carnitine exchange carrier and CPT (A) as described in the text. Medium-chain and short-chain fatty acids (Cg or less) diffuse directly into the matrix where they are converted to their acyl-CoA esters by a acyl-CoA synthase. The mechanism of p-oxidation is shown below (B). Each cycle of P-oxidation removes -CH2-CH2- as an acetyl unit until the fatty acids are completely converted to acetyl-CoA. The enzymes catalyzing each stage of P-oxidation have different but overlapping specificities. In muscle mitochondria, most acetyl-CoA is oxidized to CO2 and H2O by the citrate cycle (Figure 4) some is converted to acylcamitine by carnitine acetyltransferase (associated with the inner face of the inner membrane) and exported from the matrix. Some acetyl-CoA (if in excess) is hydrolyzed to acetate and CoASH by acetyl-CoA hydrolase in the matrix. Enzymes ... Figure 3. Mitochondrial fatty acid oxidation. Long-chain fatty acids are converted to their CoA-esters as described in the text, and their fatty-acyl-groups transferred to CoA in the matrix by the concerted action of CPT 1, the acylcarnitine/carnitine exchange carrier and CPT (A) as described in the text. Medium-chain and short-chain fatty acids (Cg or less) diffuse directly into the matrix where they are converted to their acyl-CoA esters by a acyl-CoA synthase. The mechanism of p-oxidation is shown below (B). Each cycle of P-oxidation removes -CH2-CH2- as an acetyl unit until the fatty acids are completely converted to acetyl-CoA. The enzymes catalyzing each stage of P-oxidation have different but overlapping specificities. In muscle mitochondria, most acetyl-CoA is oxidized to CO2 and H2O by the citrate cycle (Figure 4) some is converted to acylcamitine by carnitine acetyltransferase (associated with the inner face of the inner membrane) and exported from the matrix. Some acetyl-CoA (if in excess) is hydrolyzed to acetate and CoASH by acetyl-CoA hydrolase in the matrix. Enzymes ...
In all the reported examples, the enzyme selectivity was affected by the solvent used, but the stereochemical preference remained the same. However, in some specific cases it was found that it was also possible to invert the hydrolases enantioselectivity. The first report was again from iQibanov s group, which described the transesterification of the model compound (13) with n-propanol. As shown in Table 1.6, the enantiopreference of an Aspergillus oryzae protease shifted from the (l)- to the (D)-enantiomer by moving from acetonitrile to CCI4 [30]. Similar observations on the inversion of enantioselectivity by switching from one solvent to another were later reported by other authors [31]. [Pg.11]

The mechanism for the lipase-catalyzed reaction of an acid derivative with a nucleophile (alcohol, amine, or thiol) is known as a serine hydrolase mechanism (Scheme 7.2). The active site of the enzyme is constituted by a catalytic triad (serine, aspartic, and histidine residues). The serine residue accepts the acyl group of the ester, leading to an acyl-enzyme activated intermediate. This acyl-enzyme intermediate reacts with the nucleophile, an amine or ammonia in this case, to yield the final amide product and leading to the free biocatalyst, which can enter again into the catalytic cycle. A histidine residue, activated by an aspartate side chain, is responsible for the proton transference necessary for the catalysis. Another important factor is that the oxyanion hole, formed by different residues, is able to stabilize the negatively charged oxygen present in both the transition state and the tetrahedral intermediate. [Pg.172]

Enzymes catalyzing the hydrolysis of esters are termed esterases. They belong to a larger group of enzymes termed hydrolases, which can cleave a variety of chemical bonds by hydrolytic attack. In the classification of hydrolases of the International Union of Biochemistry (lUB), the following categories are recognized ... [Pg.36]

In this article are discussed the results of those studies which have become available over the past 15 years and which permit some generalizations on the catalytic mechanism of glycoside hydrolases from widely differing sources and with different sugar and aglycon specificities. It will be seen that, with few exceptions, the data support a mechanism almost identical to that proposed by Phillips and his group for lysozyme. ... [Pg.320]

The activities of both haloalkanol dehalogenase (halohydrin hydrogen lyase) that catalyzes the formation of epoxides from alkanes with vicinal hydroxyl and halogen groups, and epoxide hydrolase that brings about hydrolysis of epoxyalkanes to diols are involved in a number of degradations that involve their sequential operation. [Pg.362]


See other pages where Hydrolases group is mentioned: [Pg.301]    [Pg.309]    [Pg.766]    [Pg.25]    [Pg.828]    [Pg.829]    [Pg.363]    [Pg.301]    [Pg.309]    [Pg.766]    [Pg.25]    [Pg.828]    [Pg.829]    [Pg.363]    [Pg.168]    [Pg.439]    [Pg.482]    [Pg.310]    [Pg.289]    [Pg.279]    [Pg.685]    [Pg.91]    [Pg.96]    [Pg.126]    [Pg.134]    [Pg.171]    [Pg.134]    [Pg.40]    [Pg.80]    [Pg.187]    [Pg.213]    [Pg.320]    [Pg.333]    [Pg.347]    [Pg.371]    [Pg.66]    [Pg.785]    [Pg.910]    [Pg.185]    [Pg.306]    [Pg.340]    [Pg.381]    [Pg.676]   
See also in sourсe #XX -- [ Pg.48 , Pg.335 , Pg.336 , Pg.337 , Pg.338 , Pg.339 , Pg.340 ]




SEARCH



Enzymes groups hydrolases

Hydrolase catalytic groups

© 2024 chempedia.info