Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen production temperature

Fukada, S., et al. (2005), Absorption and Evolution of Hydrogen in/from ZrV19Fe01 Particle Bed at Hydrogen Production Temperature , International Journal o/Hydrogen Energy, 30, 861-866. [Pg.414]

Use of a low temperature shift converter in a PSA hydrogen plant is not needed it does, however, reduce the feed and fuel requirements for the same amount of hydrogen production. For large plants, the inclusion of a low temperature shift converter should be considered, as it increases the thermal efficiency by approximately 1% and reduces the unit cost of hydrogen production by approximately 0.70/1000 (20/1000 ft ) (140,141). [Pg.420]

Multistep Thermochemical Water Splitting. Multistep thermochemical hydrogen production methods are designed to avoid the problems of one-step water spHtting, ie, the high temperatures needed to achieve appreciable AG reduction, and the low efficiencies of water electrolysis. Although water electrolysis itself is quite efficient, the production of electricity is inefficient (30—40%). This results in an overall efficiency of 24—35% for water electrolysis. [Pg.426]

Reforming Conditions. The main process variables are pressure, 450—3550 kPa (50—500 psig), temperature (470—530°C), space velocity, and the catalyst employed. An excess of hydrogen (2—8 moles per mole of feed) is usually employed. Depending on feed and processing conditions, net hydrogen production is usually in the range of 140—210 m /m feed (800—1200 SCF/bbl). The C —products are recovered and normally used as fuels. [Pg.308]

The reaction is exothermic, and its equiUbrium, unaffected by pressure, favors hydrogen production as the reaction temperature is reduced (see Fuels, synthetic Hydrogen). [Pg.50]

Of these phenomena, the first three in particular, involve thermal hydraulics beginning with the pre-accident conditions. Items 4 through 7 address the meltdown of the core and its influence on (1) hydrogen production, which affects containment loads, (2) fuel temperatures, which affect in-vessel fission product releases, (3) thermal-... [Pg.318]

In a similar manner diethyl maleate (actually diethyl fumarate since the basic enamine catalyzes the maleate s isomerization upon contact) forms unstable 1,2 cycloadducts with enamines with hydrogens at temperatures below 30°C (37). At higher temperatures simple alkylated products are formed (41). Enamines with no )3 hydrogens form very stable 1,2 cycloadducts with diethyl maleate (36,37,41). The two adjacent carboethoxy groups of the cyclobutane adduct have been shown to be Irons to one another (36,37). [Pg.219]

Of this material 1.0 g is dissolved in 150 ml of warm 95% ethyl alcohol. To the solution is added 1.0 g of 5% palladium on carbon catalyst, and the mixture is hydrogenated at room temperature and atmospheric pressure by bubbling hydrogen into it for 3 hours with stirring. The hydrogenation product is filtered. The solid phase, comprising the catalyst and the desired product, is suspended in ethyl acetate and water and adjusted to pH 2 with hydrochloric acid. The suspension is filtered to remove the catalyst. The aqueous phase is separated from the filtrate, and is evaporated under vacuum to recover the desired product, 7-(D-a-aminophenylacetamido)cephalosporanic acid. [Pg.283]

The product is hydrogenated in 4,000 cc of ethanol at room temperature and under normal atmospheric pressure with a catalyst prepared In the usual manner from 400 g of Raney nickel alloy. The calculated amount of hydrogen is taken up in approximately 75 hours. After filtration and evaporation to a small volume, the residue Is distributed between 1,000 cc of chloroform and water each. The chloroform solution is then dried over sodium sulfate and evaporated to a small volume. Precipitation of the hydrogenation product with petroleum ether yields an amorphous white powder which Is filtered by suction, washed with petroleum ether and dried at 50°C In a high vacuum. 1. athyl-2-podophyllinic acid hydrazide is obtained in a practically quantitative yield. [Pg.1034]

These metals, when deposited on the E-cat catalyst, increase coke and gas-making tendencies of the catalyst. They cause dehydrogenation reactions, which increase hydrogen production and decrease gasoline yields. Vanadium can also destroy the zeolite activity and thus lead to lower conversion. The deleterious effects of these metals also depend on the regenerator temperature the rate of deactivation of a metal-laden catalyst increases as the regenerator temperature increases. [Pg.108]

The mechanisms of corrosion by steam are similar to those for water up to 450°C, but at higher temperatures are more closely related to the behaviour in carbon dioxide. Studies at 100°C have demonstrated that uranium hydride is produced during direct reaction of the water vapour with the metal and not by a secondary reaction with the hydrogen product. Also at 100°C it has been shown that the hydride is more resistant than the metal. Inhibition with oxygen reduces the evolution of hydrogen and does not involve reaction of the oxygen with the uranium . Above 450°C the hydride is not... [Pg.909]

Feed gases to most, if not all, methanation systems for substitute natural gas (SNG) production are theoretically capable of forming carbon. This potential also exists for feed gases to all first-stage shift converters operating in ammonia plants and in hydrogen production plants. However, it has been demonstrated commercially over a period of many years that carbon formation at inlet temperatures in shift converters is a relatively slow reaction and that, once shifted, the gas loses its potential for carbon formation. Carbon formation has not been a common problem at the inlet to shift converters. It has been no problem at all in our bench-scale work, and it is not expected to be a problem in our pilot plant operations. [Pg.154]

A side stream from the cathode product mixture is passed over a room temperature alumina bed to remove HF. The nitrogen/hydrogen ratio is estimated, and from this ratio and the known flow rate of the nitrogen reference stream, the current efficiency for hydrogen production is calculated. [Pg.535]

The influence of the presence of sulfur adatoms on the adsorption and decomposition of methanol and other alcohols on metal surfaces is in general twofold. It involves reduction of the adsorption rate and the adsorptive capacity of the surface as well as significant modification of the decomposition reaction path. For example, on Ni(100) methanol is adsorbed dissociatively at temperatures as low as -100K and decomposes to CO and hydrogen at temperatures higher than 300 K. As shown in Fig. 2.38 preadsorption of sulfur on Ni(100) inhibits the complete decomposition of adsorbed methanol and favors the production of HCHO in a narrow range of sulfur coverage (between 0.2 and 0.5). [Pg.70]

Hydrogen production from biomass>ethanol at ambient temperature with novel diaphragm reactor... [Pg.813]

Recently, fuel cells have commanded attention to establish high-effidency hydrogen production process. Some catalytic processes have been considered, but they have typically entailed numerous problems (high temperatures, catalyst deactitmtion, and coking). [Pg.813]

Low energy pulsed (LEP) discharge is a simple hydrogen production process. This novel technique requires neither high temperature nor pressure die reaction takes place at room temperature and atmospheric pressure. We have successftilly reformed hydrocarbons using this LEP dischai e [1-6]. [Pg.813]


See other pages where Hydrogen production temperature is mentioned: [Pg.183]    [Pg.156]    [Pg.183]    [Pg.156]    [Pg.420]    [Pg.421]    [Pg.423]    [Pg.427]    [Pg.427]    [Pg.259]    [Pg.20]    [Pg.50]    [Pg.56]    [Pg.1126]    [Pg.304]    [Pg.425]    [Pg.532]    [Pg.198]    [Pg.604]    [Pg.561]    [Pg.565]    [Pg.370]    [Pg.906]    [Pg.1301]    [Pg.146]    [Pg.152]    [Pg.294]    [Pg.421]    [Pg.629]    [Pg.631]    [Pg.648]    [Pg.816]    [Pg.818]    [Pg.819]    [Pg.825]   


SEARCH



High temperature concepts including hydrogen production

Hydrogen production high-temperature

Hydrogen temperature

Temperature production

Very high temperature reactor hydrogen production

© 2024 chempedia.info