Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen peroxide surface

This is a disproportionation reaction, and is strongly catalysed by light and by a wide variety of materials, including many metals (for example copper and iron) especially if these materials have a large surface area. Some of these can induce explosive decomposition. Pure hydrogen peroxide can be kept in glass vessels in the dark, or in stone jars or in vessels made of pure aluminium with a smooth surface. [Pg.279]

Because the reaction takes place in the Hquid, the amount of Hquid held in the contacting vessel is important, as are the Hquid physical properties such as viscosity, density, and surface tension. These properties affect gas bubble size and therefore phase boundary area and diffusion properties for rate considerations. Chemically, the oxidation rate is also dependent on the concentration of the anthrahydroquinone, the actual oxygen concentration in the Hquid, and the system temperature (64). The oxidation reaction is also exothermic, releasing the remaining 45% of the heat of formation from the elements. Temperature can be controUed by the various options described under hydrogenation. Added heat release can result from decomposition of hydrogen peroxide or direct reaction of H2O2 and hydroquinone (HQ) at a catalytic site (eq. 19). [Pg.476]

Hydrogen peroxide is also used to bleach soHd surfaces such as wood (qv) or linoleum, and to improve the color of oils and waxes. [Pg.481]

Precipitate formation can occur upon contact of iajection water ions and counterions ia formation fluids. Soflds initially preseat ia the iajectioa fluid, bacterial corrosioa products, and corrosion products from metal surfaces ia the iajectioa system can all reduce near-weUbore permeability. Injectivity may also be reduced by bacterial slime that can grow on polymer deposits left ia the wellbore and adjacent rock. Strong oxidising agents such as hydrogen peroxide, sodium perborate, and occasionally sodium hypochlorite can be used to remove these bacterial deposits (16—18). [Pg.189]

Etch Mechanisms. Most wet etches for the compound semiconductors employ oxidation of the semiconductor followed by dissolution of the oxide. For this reason, many wet etches contain the oxidant hydrogen peroxide, although nitric acid can also be used. One advantage of wet etching over dry is the absence of subsurface damage that is common with dry etching. Metal contacts placed on wet-etched surfaces exhibit more ideal characteristics than dry-etched surfaces. [Pg.381]

Eor the cover-coat direct-on process, a ferric sulfate [10028-22-5] Ee2(S0 2> etch is included in the metal pretreatment for rapid metal removal. It is designed to remove ca 20 g/m (2 g/ft ) of iron from the sheet metal surface. Hydrogen peroxide [7722-84-1/, H2O2, is added intermittently to a 1% ferric sulfate solution to reoxidize ferrous sulfate [7720-78-7] EeSO, to ferric sulfate. [Pg.212]

Figure S.l The enzyme superoxide dismutase (SOD). SOD is a P structure comprising eight antiparallel P strands (a). In addition, SOD has two metal atoms, Cu and Zn (yellow circles), that participate in the catalytic action conversion of a superoxide radical to hydrogen peroxide and oxygen. The eight p strands are arranged around the surface of a barrel, which is viewed along the barrel axis in (b) and perpendicular to this axis in (c). [(a) Adapted from J.S. Richardson. The stmcture of SOD was determined in the laboratory of J.S. and D.R. Richardson, Duke University.)... Figure S.l The enzyme superoxide dismutase (SOD). SOD is a P structure comprising eight antiparallel P strands (a). In addition, SOD has two metal atoms, Cu and Zn (yellow circles), that participate in the catalytic action conversion of a superoxide radical to hydrogen peroxide and oxygen. The eight p strands are arranged around the surface of a barrel, which is viewed along the barrel axis in (b) and perpendicular to this axis in (c). [(a) Adapted from J.S. Richardson. The stmcture of SOD was determined in the laboratory of J.S. and D.R. Richardson, Duke University.)...
Most of the controlled corrosion studies on beryllium have been carried out in the USA in simulated reactor coolants. The latter have usually been water, aerated and de-aerated, containing small amounts of hydrogen peroxide and at temperatures up to 300-350°C. Many variables have been examined, covering surface condition, chemical composition, temperature, pH, galvanic effects and mechanical stress . [Pg.834]

Surface condition Machined, abraded and pickled surfaces all exhibit much the same behaviour in water, and after exposure of up to about one year at temperatures less than I00°C average attack measures 0 0025-0 0050mm/y. Almost always, however, corrosion of beryllium in water is accompanied by pitting and, on machined surfaces, pits of as much as 0-25mm have been observed in 0-0005M hydrogen peroxide at 85°C. Under similar conditions, annealed material has been found to be somewhat less resistant to attack than either machined or pickled surfaces. [Pg.834]

The mechanism of inhibition by the salts of the long chain fatty acids has been examined . It was concluded that, in the case of the lead salts, metallic lead was first deposited at certain points and that at these points oxygen reduction proceeded more easily, consequently the current density was kept sufficiently high to maintain ferric film formation in addition, any hydrogen peroxide present may assist in keeping the iron ions in the oxide film in the ferric condition, consequently the air-formed film is thickened until it becomes impervious to iron ions. The zinc, calcium and sodium salts are not as efficient inhibitors as the lead salts and recent work has indicated that inhibition is due to the formation of ferric azelate, which repairs weak spots in the air-formed film. This conclusion has been confirmed by the use of C labelled azelaic acid, which was found to be distributed over the surface of the mild steel in a very heterogeneous manner. ... [Pg.596]

Propose a SECM experiment for mapping the distribution of an oxidase enzyme within a carbon composite surface. (Note that the enzyme generates hydrogen peroxide in the presence of its substrate and oxygen.)... [Pg.59]


See other pages where Hydrogen peroxide surface is mentioned: [Pg.34]    [Pg.278]    [Pg.49]    [Pg.470]    [Pg.481]    [Pg.102]    [Pg.528]    [Pg.95]    [Pg.363]    [Pg.410]    [Pg.150]    [Pg.348]    [Pg.148]    [Pg.150]    [Pg.356]    [Pg.128]    [Pg.111]    [Pg.162]    [Pg.838]    [Pg.10]    [Pg.283]    [Pg.195]    [Pg.2]    [Pg.834]    [Pg.391]    [Pg.815]    [Pg.398]    [Pg.411]    [Pg.32]    [Pg.93]    [Pg.783]    [Pg.123]    [Pg.216]    [Pg.213]    [Pg.54]    [Pg.205]    [Pg.1054]    [Pg.129]   
See also in sourсe #XX -- [ Pg.220 ]




SEARCH



Hydrogen peroxide electrode surface

Hydrogen peroxide surface activation

Hydrogen peroxide surface-water samples

Surfaces hydrogen

© 2024 chempedia.info