Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen peroxide, rate

In a 500 ml. three-necked flask, equipped with a mechanical stirrer, thermometer and dropping funnel, place 300 ml. of 88-90 per cent, formic acid and add 70 ml. of 30 per cent, hydrogen peroxide. Then introduce slowly 41 g. (51 ml.) of freshly distilled cyclohexene (Section 111,12) over a period of 20-30 minutes maintain the temperature of the reaction mixture between 40° and 45° by cooling with an ice bath and controlling the rate of addition. Keep the reaction mixture at 40° for 1 hour after all the cyclohexene has been added and then allow to stand overnight at room temperature. Remove most of the formic acid and water by distillation from a water bath under reduced pressure. Add an ice-cold solution of 40 g. of sodium hydroxide in 75 ml. of water in small portions to the residual mixture of the diol and its formate take care that the tempera... [Pg.894]

The earliest examples of analytical methods based on chemical kinetics, which date from the late nineteenth century, took advantage of the catalytic activity of enzymes. Typically, the enzyme was added to a solution containing a suitable substrate, and the reaction between the two was monitored for a fixed time. The enzyme s activity was determined by measuring the amount of substrate that had reacted. Enzymes also were used in procedures for the quantitative analysis of hydrogen peroxide and carbohydrates. The application of catalytic reactions continued in the first half of the twentieth century, and developments included the use of nonenzymatic catalysts, noncatalytic reactions, and differences in reaction rates when analyzing samples with several analytes. [Pg.623]

As the temperature is increased through the NTC zone, the contribution of alkylperoxy radicals falls. Littie alkyl hydroperoxide is made and hydrogen peroxide decomposition makes a greater contribution to radical generation. Eventually the rate goes through a minimum. At this point, reaction 2 is highly displaced to the left and alkyl radicals are the dominant radical species. [Pg.339]

The mechanism and rate of hydrogen peroxide decomposition depend on many factors, including temperature, pH, presence or absence of a catalyst (7—10), such as metal ions, oxides, and hydroxides etc. Some common metal ions that actively support homogeneous catalysis of the decomposition include ferrous, ferric, cuprous, cupric, chromate, dichromate, molybdate, tungstate, and vanadate. For combinations, such as iron and... [Pg.471]

The stabihty of pure hydrogen peroxide solutions increases with increasing concentration and is maximum between pH 3.5—4.5. The decomposition rate of ultrapure hydrogen peroxide increases 2.2—2.3-fold for each 10 °C rise in temperature from ambient to about 100 °C. This approximates an Arrhenius-type response with activation energy of about 58 kJ/mol (13.9 kcal/mol). However, decomposition increases as low as 1.6-fold for each 10 °C rise have been noted for impure, unstabilized solutions. [Pg.472]

Oxidation. Hydrogen peroxide is a strong oxidant. Most of its uses and those of its derivatives depend on this property. Hydrogen peroxide oxidizes a wide variety of organic and inorganic compounds, ranging from iodide ions to the various color bodies of unknown stmcture in ceUulosic fibers. The rate of these reactions may be quite slow or so fast that the reaction occurs on a reactive shock wave. The mechanisms of these reactions are varied and dependent on the reductive substrate, the reaction environment, and catalysis. Specific reactions are discussed in a number of general and other references (4,5,32—35). [Pg.472]

Because the reaction takes place in the Hquid, the amount of Hquid held in the contacting vessel is important, as are the Hquid physical properties such as viscosity, density, and surface tension. These properties affect gas bubble size and therefore phase boundary area and diffusion properties for rate considerations. Chemically, the oxidation rate is also dependent on the concentration of the anthrahydroquinone, the actual oxygen concentration in the Hquid, and the system temperature (64). The oxidation reaction is also exothermic, releasing the remaining 45% of the heat of formation from the elements. Temperature can be controUed by the various options described under hydrogenation. Added heat release can result from decomposition of hydrogen peroxide or direct reaction of H2O2 and hydroquinone (HQ) at a catalytic site (eq. 19). [Pg.476]

Alcohol autoxidation is carried out in the range of 70—160°C and 1000—2000 kPa (10—20 atm). These conditions maintain the product and reactants as Hquids and are near optimum for practical hydrogen peroxide production rates. Several additives including acids, nitriles, stabHizers, and sequestered transition-metal oxides reportedly improve process economics. The product mixture, containing hydrogen peroxide, water, acetone, and residual isopropyl alcohol, is separated in a wiped film evaporator. The organics and water are taken overhead and further refined to recover by-product acetone and the... [Pg.476]

The first detailed investigation of the reaction kinetics was reported in 1984 (68). The reaction of bis(pentachlorophenyl) oxalate [1173-75-7] (PCPO) and hydrogen peroxide cataly2ed by sodium saUcylate in chlorobenzene produced chemiluminescence from diphenylamine (DPA) as a simple time—intensity profile from which a chemiluminescence decay rate constant could be determined. These studies demonstrated a first-order dependence for both PCPO and hydrogen peroxide and a zero-order dependence on the fluorescer in accord with an earher study (9). Furthermore, the chemiluminescence quantum efficiencies Qc) are dependent on the ease of oxidation of the fluorescer, an unstable, short-hved intermediate (r = 0.5 /is) serves as the chemical activator, and such a short-hved species "is not consistent with attempts to identify a relatively stable dioxetane as the intermediate" (68). [Pg.266]

Oxygen Compounds. Although hydrogen peroxide is unreactive toward ozone at room temperature, hydroperoxyl ion reacts rapidly (39). The ozonide ion, after protonation, decomposes to hydroxyl radicals and oxygen. Hydroxyl ions react at a moderate rate with ozone (k = 70). [Pg.492]

Fig. 2. Steps in advanced oxidation process (AOPs) involving o2one, hydrogen peroxide, and uv light of 254 nm. ( D) represents the doublet state ( ) represents quantum yield, and the other numbers associated with the reaction arrows are rate constants in units of (Af-s). Dashed arrows indicate... Fig. 2. Steps in advanced oxidation process (AOPs) involving o2one, hydrogen peroxide, and uv light of 254 nm. ( D) represents the doublet state ( ) represents quantum yield, and the other numbers associated with the reaction arrows are rate constants in units of (Af-s). Dashed arrows indicate...
A samphng probe is placed at any location in the stack, and a grab sample is collected in an evacuated flask. This flask contains a solution of siilfiiric acid and hydrogen peroxide, which reacts with the NO. The volume and moisture content of the exhaust-gas stream must be determined for calculation of the total mass-emission rate. The sample is sent to a laboratoiy, where the concentration of nitrogen oxides, except nitrons oxide, is determined colorimetrically. [Pg.2200]

The addition rate of the hydrogen peroxide must be adjusted so that the temperature of the reaction mixture does not rise above 10 C. The yield is reduced if the temperature is allowed to rise above that point. The end point of the reaction, when excess peroxide is present, can be determined with potassium iodide - starch test paper. The yield also is reduced if more than a slight excess of hydrogen peroxide is used. [Pg.213]

Define the rate of this reaction (the oxidation of hydrogen peroxide by permanganate) ... [Pg.15]


See other pages where Hydrogen peroxide, rate is mentioned: [Pg.47]    [Pg.47]    [Pg.659]    [Pg.49]    [Pg.336]    [Pg.339]    [Pg.474]    [Pg.476]    [Pg.480]    [Pg.480]    [Pg.481]    [Pg.481]    [Pg.433]    [Pg.274]    [Pg.504]    [Pg.92]    [Pg.97]    [Pg.111]    [Pg.179]    [Pg.73]    [Pg.105]    [Pg.363]    [Pg.1]    [Pg.171]    [Pg.349]    [Pg.349]    [Pg.537]    [Pg.145]    [Pg.145]    [Pg.150]    [Pg.460]    [Pg.169]    [Pg.70]    [Pg.120]    [Pg.165]    [Pg.195]    [Pg.505]   


SEARCH



Hydrogen peroxide decay rate

Hydrogen peroxide decay rate constants

Hydrogen peroxide decomposition rates

Hydrogen peroxide formation rates

Hydrogen peroxide reaction rate

Hydrogen peroxide second-order rate constants

Hydrogenation rates

© 2024 chempedia.info