Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen peroxide pollution

Odour Pollutant dependent-acidic or alkaline hydrogen peroxide Pollutant dependent... [Pg.225]

Toxic or malodorous pollutants can be removed from industrial gas streams by reaction with hydrogen peroxide (174,175). Many Hquid-phase methods have been patented for the removal of NO gases (138,142,174,176—178), sulfur dioxide, reduced sulfur compounds, amines (154,171,172), and phenols (169). Other effluent treatments include the reduction of biological oxygen demand (BOD) and COD, color, odor (142,179,180), and chlorine concentration. [Pg.481]

HO-oxidation of an individual NMHCj produces H02 radicals with a yield aj, and oxidation of the NMHC oxidation product produces H02 in stoichiometric amount The lumped coefficients or yields a and p need not be integers, and represent the effectiveness of a particular NMHCj in producing RO2. and H02 radicals (lumped together as HO2) that will then oxidize NO. to N02 in processes such as R6 and R13, producing one net ozone molecule each. Alternatively, when the NO. concentration is low, peroxyl radicals may form PAN (as in R22) or hydrogen peroxide (as in R33) which are other oxidant species. In this formulation, transport is expressed by an overall dilution rate of the polluted air mass into unpolluted air with a rate constant (units = reciprocal time dilution lifetime=1// ). This rate constant includes scavenging processes such as precipitation removal as well as mixing with clean air. [Pg.75]

Uncertainties in Photochemical Models. The ability of photochemical models to accurately predict HO concentrations is undoubtedly more reliable in clean vs. polluted air, since the number of processes that affect [HO ] and [H02 ] is much greater in the presence of NMHC. Logan et al (58) have obtained simplified equations for [HO ] and [HO2 ] for conditions where NMHC chemistry can be ignored. The equation for HO concentration is given in Equation E6. The first term in the numerator refers to the fraction of excited oxygen atoms formed in R1 that react to form HO J refers to the photodissociation of hydrogen peroxide to form 2 HO molecules other rate constants refer to numbered reactions above. [Pg.92]

Hydrogen peroxide plays an important role in many processes in the atmosphere and in natural aqueous systems. It affects numerous redox reactions, which in turn influence the stability and transport of other chemical substances, e.g., pollutants. In the atmosphere, hydrogen peroxide is believed to be involved in several important oxidation reactions, e.g., conversion of sulfur dioxide to sulfuric acid... [Pg.154]

Chromox [Chromium oxidation] A process for destroying organic pollutants in aqueous wastes by oxidation with hydrogen peroxide, catalyzed by Cr6+. Developed by British Nuclear Fuels in 1995, originally for use in nuclear reprocessing. [Pg.64]

TeRRox A process for decontaminating soil which has been polluted by hydrocarbons by treating it with hydrogen peroxide. Developed by DeGussa and operated at its plant in Knapsack, Germany, from 1996. [Pg.266]

AOPs are less appropriate for the complete treatment of wastewater streams containing high concentration of organic pollutants. The main reason is that the energy costs and costs of chemicals such as ozone and hydrogen peroxide are relatively high. In case of UV also the equipment costs may be substantially. To treat these concentrated waste streams the application of AOPs has to be focused on the selective oxidation of specific toxic pollutants or on the partial oxidation of pollutants. [Pg.240]

Removal of residual amounts of organic pollution. To that aim activated carbon or oxidation with ozone or hydrogen peroxide can be used... [Pg.244]

Several articles have reviewed the ongoing work in the photocatalytic degradation of pollutants that involve oxidation or reduction processes (depending on the experimental conditions) [16,18,187,265-273], The addition of external oxidants such as ozone or hydrogen peroxide during the photocatalytic process can improve the degradation of the organic material when they are added in suitable doses [274-275],... [Pg.448]

The polymerization of phenols or aromatic amines is applied in resin manufacture and the removal of phenols from waste water. Polymers produced by HRP-catalyzed coupling of phenols in non-aqueous media are potential substitutes for phenol-formaldehyde resins [123,124], and the polymerized aromatic amines find applications as conductive polymers [112]. Phenols and their resins are pollutants in aqueous effluents derived from coal conversion, paper-making, production of semiconductor chips, and the manufacture of resins and plastics. Their transformation by peroxidase and hydrogen peroxide constitutes a convenient, mild and environmentally acceptable detoxification process [125-127]. [Pg.90]

The photochemical oxidants that are observed in the atmosphere are ozone, Oj, nitrogen dioxide, NOj and peroxyacetylnitrate (PAN). Several other substances, such as hydrogen peroxide, HjO, may be classified as photochemical oxidants, but their common presence in smog is not well established. The oxidants are secondary pollutants i.e., they are formed as a result of chemical reactions in the atmosphere. Primary pollutants are those emitted directly by pollution sources. [Pg.14]

Photochemical oxidants are atmospheric pollutants produced by a series of reactions between hydrocarbons and oxides of nitrogen in the presence of sunlight. The recognized photochemical oxidants that have been measured in ambient air are ozone, the peroxyacylnitrates (mostly as PAN), and hydrogen peroxide. ... [Pg.239]

Besides ozone, the main indicator of photochemical pollution, other important concomitant products are peroxyacetylnitrate (PAN), hydrogen peroxide, nitrogen dioxide, hydroxyl radicals and various aldehydes that are both products and primary pollutants, particles, sulfates, nitrates, ammonium, chloride, water, and various types of oxygenated organic compounds. The most important precursors of photochemical pollution are nitric oxide and hydrocarbons. The measurement procedures for the hydrocarbons are not as highly developed as those for ozone and the nitrogen oxides. [Pg.268]


See other pages where Hydrogen peroxide pollution is mentioned: [Pg.311]    [Pg.211]    [Pg.369]    [Pg.389]    [Pg.412]    [Pg.472]    [Pg.481]    [Pg.246]    [Pg.421]    [Pg.382]    [Pg.383]    [Pg.794]    [Pg.248]    [Pg.129]    [Pg.309]    [Pg.225]    [Pg.936]    [Pg.98]    [Pg.99]    [Pg.275]    [Pg.83]    [Pg.135]    [Pg.40]    [Pg.282]    [Pg.309]    [Pg.310]    [Pg.161]    [Pg.190]    [Pg.477]    [Pg.721]    [Pg.244]    [Pg.147]    [Pg.156]    [Pg.242]    [Pg.147]    [Pg.245]    [Pg.673]   
See also in sourсe #XX -- [ Pg.642 ]




SEARCH



© 2024 chempedia.info