Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen molar volumes

Because the synthesis reactions are exothermic with a net decrease in molar volume, equiUbrium conversions of the carbon oxides to methanol by reactions 1 and 2 are favored by high pressure and low temperature, as shown for the indicated reformed natural gas composition in Figure 1. The mechanism of methanol synthesis on the copper—zinc—alumina catalyst was elucidated as recentiy as 1990 (7). For a pure H2—CO mixture, carbon monoxide is adsorbed on the copper surface where it is hydrogenated to methanol. When CO2 is added to the reacting mixture, the copper surface becomes partially covered by adsorbed oxygen by the reaction C02 CO + O (ads). This results in a change in mechanism where CO reacts with the adsorbed oxygen to form CO2, which becomes the primary source of carbon for methanol. [Pg.275]

Beck, et al. have used the permeation technique to study the effect of uniaxial tensile stresses in the elastic region on hydrogen permeation through pure iron, and have shown that it increases with increase in stress. The partial molar volume of hydrogen (cubic centimetres of hydrogen per mole of iron) in ferrous alloys can be evaluated from the variation of permeation with applied stress, and from the relationship... [Pg.1215]

Ammonia a base, 184 boiling point, 64 complexes, 392, 395, 408 complex with Ag+, 154 Haber process for, 150 and hydrogen chloride, 24 model of, 21 molar volume. 60, 64 production, 150 P V behavior of, 19, 51, 60 solubility, 20 Ampere, 241 Amphoteric, 371 complexes, 396 Analogy... [Pg.455]

Deterioration of electrode performance due to corrosion of electrode components is a critical problem. The susceptibility of MHt electrodes to corrosion is essentially determined by two factors surface passivation due to the presence of surface oxides or hydroxides, and the molar volume of hydrogen, VH, in the hydride phase. As pointed out by Willems and Buschow [40], VH is important since it governs alloy expansion and contraction during the charge-discharge cycle. Large volume changes... [Pg.217]

Fig. 8. Partial molar volumes in the saturated liquid phase of the propane-methane system at IOO°F. (O) (0) Data of B. H. Sage and W. N. Lacey, Some Properties of the Lighter Hydrocarbons, Hydrogen Sulfide, and Carbon Dioxide. American Petroleum... Fig. 8. Partial molar volumes in the saturated liquid phase of the propane-methane system at IOO°F. (O) (0) Data of B. H. Sage and W. N. Lacey, Some Properties of the Lighter Hydrocarbons, Hydrogen Sulfide, and Carbon Dioxide. American Petroleum...
The presence of intermolecular forces also accounts for the variation in the compression factor. Thus, for gases under conditions of pressure and temperature such that Z > 1, the repulsions are more important than the attractions. Their molar volumes are greater than expected for an ideal gas because repulsions tend to drive the molecules apart. For example, a hydrogen molecule has so few electrons that the its molecules are only very weakly attracted to one another. For gases under conditions of pressure and temperature such that Z < 1, the attractions are more important than the repulsions, and the molar volume is smaller than for an ideal gas because attractions tend to draw molecules together. To improve our model of a gas, we need to add to it that the molecules of a real gas exert attractive and repulsive forces on one another. [Pg.288]

The molar volumes of CH4 and CD4 are known to differ in the expected direction in the condensed phases at low temperatures (Olusius and Weigand, 1940 Grigor and Steele, 1968). Such a difference would in principle originate in the movement of the molecule as a whole as well as in its carbon-hydrogen oscillations, but a macroscopically available compound would be expected to offer better possibilities for experimental investigation than poorly known transition states. [Pg.3]

In cellulose II with a chain modulus of 88 GPa the likely shear planes are the 110 and 020 lattice planes, both with a spacing of dc=0.41 nm [26]. The periodic spacing of the force centres in the shear direction along the chain axis is the distance between the interchain hydrogen bonds p=c/2=0.51 nm (c chain axis). There are four monomers in the unit cell with a volume Vcen=68-10-30 m3. The activation energy for creep of rayon yarns has been determined by Halsey et al. [37]. They found at a relative humidity (RH) of 57% that Wa=86.6 kj mole-1, at an RH of 4% Wa =97.5 kj mole 1 and at an RH of <0.5% Wa= 102.5 kj mole-1. Extrapolation to an RH of 65% gives Wa=86 kj mole-1 (the molar volume of cellulose taken by Halsey in his model for creep is equal to the volume of the unit cell instead of one fourth thereof). [Pg.43]

Because very small mole fraction solubilities correspond in practice to the molar ratio [45 a], the values can (considering the molar volume and density of the solvent) be easily transformed into hydrogen concentrations (see Table 10.1,... [Pg.269]

Background Avogadro s law (Vin2 = V2ni), where moles, n = mw (grams/mole) exPresses the relationship between molar mass, the actual mass and the number of moles of a gas. The molar volume of a gas at STP, VSTP is equal to the volume of the gas measured at STP divided by the number of moles VSTp = pp. Dalton s Law of Partial Pressure (Ptotai = Pi + P2 + P3 +. ..) and the derivation, Pi = pp Ptotai will also be used in this experiment to predict the volume occupied by one mole of hydrogen gas at STP. [Pg.264]

The octanol-water partition coefficient, Kow, is the most widely used descriptor of hydrophobicity in quantitative structure activity relationships (QSAR), which are used to describe sorption to organic matter, soil, and sediments [15], bioaccumulation [104], and toxicity [105 107J. Octanol is an amphiphilic bulk solvent with a molar volume of 0.12 dm3 mol when saturated with water. In the octanol-water system, octanol contains 2.3 mol dm 3 of water (one molecule of water per four molecules of octanol) and water is saturated with 4.5 x 10-3 mol dm 3 octanol. Octanol is more suitable than any other solvent system (for) mimicking biological membranes and organic matter properties, because it contains an aliphatic alkyl chain for pure van der Waals interactions plus the alcohol group, which can act as a hydrogen donor and acceptor. [Pg.217]

Table I. MOLAR VOLUMES OF AMMONIA, CARBON DIOXIDE, AND HYDROGEN SULFIDE IN WATER... Table I. MOLAR VOLUMES OF AMMONIA, CARBON DIOXIDE, AND HYDROGEN SULFIDE IN WATER...
The partial molar volume of hydrogen sulfide is nearly equal to that of carbon dioxide (Table 1), and we tentatively assume that changes in its salting-out coefficients with temperature are the same as those of carbon dioxide. [Pg.129]

It is unrealistic to treat molecules of solvents such as N,N-dimethylformamide (DMF) as spheres in estimating AV for solvent exchange as for water. One can, however, anticipate that solvents which have unusually open structures because of extensive hydrogen bonding (notably water) will lose a relatively large fraction of their molar volume V on coordination to a metal ion, whereas for dipolar aprotic solvents this fraction will be much less, with partially H-bonded solvents... [Pg.56]

The material properties used in the simulations pertain to a new X70/X80 steel with an acicular ferrite microstructure and a uniaxial stress-strain curve described by er, =tr0(l + / )", where ep is the plastic strain, tr0 = 595 MPa is the yield stress, e0=ff0l E the yield strain, and n = 0.059 the work hardening coefficient. The Poisson s ratio is 0.3 and Young s modulus 201.88 OPa. The system s temperature is 0 = 300 K. We assume the hydrogen lattice diffusion coefficient at this temperature to be D = 1.271x10 m2/s. The partial molar volume of hydrogen in solid solution is... [Pg.190]

Table 13.1). In the solid P(CH4) > P(CD4) but the curves cross below the melting point and the vapor pressure IE for the liquids is inverse (Pd > Ph). For water and methane Tc > Tc, but for water Pc > Pc and for methane Pc < Pc- As always, the primes designate the lighter isotopomer. At LV coexistence pliq(D20) < Pliq(H20) at all temperatures (remember the p s are molar, not mass, densities). For methane pliq(CD4) < pLiq(CH4) only at high temperature. At lower temperatures Pliq(CH4) < pliq(CD4). The critical density of H20 is greater than D20, but for methane pc(CH4) < pc(CD4). Isotope effects are large in the hydrogen and helium systems and pLIQ/ < pLiQ and P > P across the liquid range. Pc < Pc and pc < pc for both pairs. Vapor pressure and molar volume IE s are discussed in the context of the statistical theory of isotope effects in condensed phases in Chapters 5 and 12, respectively. The CS treatment in this chapter offers an alternative description. Table 13.1). In the solid P(CH4) > P(CD4) but the curves cross below the melting point and the vapor pressure IE for the liquids is inverse (Pd > Ph). For water and methane Tc > Tc, but for water Pc > Pc and for methane Pc < Pc- As always, the primes designate the lighter isotopomer. At LV coexistence pliq(D20) < Pliq(H20) at all temperatures (remember the p s are molar, not mass, densities). For methane pliq(CD4) < pLiq(CH4) only at high temperature. At lower temperatures Pliq(CH4) < pliq(CD4). The critical density of H20 is greater than D20, but for methane pc(CH4) < pc(CD4). Isotope effects are large in the hydrogen and helium systems and pLIQ/ < pLiQ and P > P across the liquid range. Pc < Pc and pc < pc for both pairs. Vapor pressure and molar volume IE s are discussed in the context of the statistical theory of isotope effects in condensed phases in Chapters 5 and 12, respectively. The CS treatment in this chapter offers an alternative description.
While the solubility parameter can be used to conduct solubility studies, it is more informative, in dealing with charged polymers such as SPSF, to employ the three dimensional solubility parameter (A7,A8). The solubility parameter of a liquid is related to the total cohesive energy (E) by the equation 6 = (E/V) 2, where V is the molar volume. The total cohesive energy can be broken down into three additive components E = E j + Ep + Ejj, where the three components represent the contributions to E due to dispersion or London forces, permanent dipole-dipole or polar forces, and hydrogen bonding forces, respectively. This relationship is used... [Pg.341]


See other pages where Hydrogen molar volumes is mentioned: [Pg.597]    [Pg.52]    [Pg.115]    [Pg.1216]    [Pg.460]    [Pg.460]    [Pg.463]    [Pg.598]    [Pg.436]    [Pg.204]    [Pg.237]    [Pg.320]    [Pg.291]    [Pg.53]    [Pg.59]    [Pg.62]    [Pg.108]    [Pg.26]    [Pg.189]    [Pg.142]    [Pg.169]    [Pg.514]    [Pg.126]    [Pg.149]    [Pg.426]    [Pg.408]    [Pg.178]    [Pg.75]    [Pg.132]    [Pg.697]    [Pg.341]    [Pg.8]   
See also in sourсe #XX -- [ Pg.112 ]




SEARCH



Hydrogen volume

Molar volume

Molarity volume

© 2024 chempedia.info