Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen, effect formation

Solvent effects also depend on the ground-state structure of the substrate and on the transition-state structure, as is shown below. Here let us merely note that A-heterocyclic compounds tend to form a hydrogen bond with hydroxylic solvents even in the ground state. Hydrogen-bond formation in this case is a change in the direction of quaternization of the aza group, as demonstrated by spectral evidence. Therefore, it is undoubtedly a rate-enhancing interaction. [Pg.308]

After 19 hours, no reaction between the zinc chelate 2 and benzaldehyde can be detected at 20 °C. However, 10 mol % of the zinc chelate effectively catalyzes theenantioselective addition of diethylzinc to aromatic aldehydes. The predominant formation of the S-configurated products, effected by this conformationally unambiguous catalyst, can be explained by a six-mem-bered cyclic transition state assembly17. The fact that the zinc chelate formed from ligand M is an equally effective catalyst clearly demonstrates that activation of the aldehyde moiety does not occur as a consequence of hydrogen bond formation between the ammonium proton of the pyrrolidine unit and the aldehydic oxygen. [Pg.172]

The beneficial effect of deprenyl in Parkinson s disease was su ested to be in part due to its effect on increasing the levels of SOD activity in several brain regions (Carrillo et al., 1993). Deprenyl is known to inhibit monoamine oxidase type B, which results in a reduction in hydrogen peroxide formation by blockade of the oxidative deamination of dopamine. That is believed to be the major mechanism of action of this drug in inhibiting the progression of Parkinson s disease. [Pg.78]

One of the most popular applications of molecular rotors is the quantitative determination of solvent viscosity (for some examples, see references [18, 23-27] and Sect. 5). Viscosity refers to a bulk property, but molecular rotors change their behavior under the influence of the solvent on the molecular scale. Most commonly, the diffusivity of a fluorophore is related to bulk viscosity through the Debye-Stokes-Einstein relationship where the diffusion constant D is inversely proportional to bulk viscosity rj. Established techniques such as fluorescent recovery after photobleaching (FRAP) and fluorescence anisotropy build on the diffusivity of a fluorophore. However, the relationship between diffusivity on a molecular scale and bulk viscosity is always an approximation, because it does not consider molecular-scale effects such as size differences between fluorophore and solvent, electrostatic interactions, hydrogen bond formation, or a possible anisotropy of the environment. Nonetheless, approaches exist to resolve this conflict between bulk viscosity and apparent microviscosity at the molecular scale. Forster and Hoffmann examined some triphenylamine dyes with TICT characteristics. These dyes are characterized by radiationless relaxation from the TICT state. Forster and Hoffmann found a power-law relationship between quantum yield and solvent viscosity both analytically and experimentally [28]. For a quantitative derivation of the power-law relationship, Forster and Hoffmann define the solvent s microfriction k by applying the Debye-Stokes-Einstein diffusion model (2)... [Pg.274]

Metcalf and Eddy, Inc. (1991), Wastewater Engineering — Treatment, Disposal and Reuse, 3rd edition revised by G. Tchobanoglous and F. L. Burton, McGraw-Hill, Inc., New York, p. 1334. Nielsen, P.H. and T. Hvitved-Jacobsen (1988), Effect of sulfate and organic matter on the hydrogen sulfide formation in biofilms of filled sanitary sewers, J. Water Pol. Contr. Fed., 60(5), 627-634. [Pg.64]

Nielsen, P.H. and T. Hvitved-Jacobsen (1988), Effect of sulfate and organic matter on the hydrogen sulfide formation in biofilms of filled sanitary sewers, J. WPCF, 60, 627-634. [Pg.168]

Highley T. Effect of carbohydrate and nitrogen on hydrogen peroxide formation by wood decay fungi in solid medium. FEMS Microbiol Lett 1987 48 373-378. [Pg.47]

The ability of quaternary ammonium halides to form weakly H-bonded complex ion-pairs with acids is well established, as illustrated by the stability of quaternary ammonium hydrogen difluoride and dihydrogen trifluorides [e.g. 60] and the extractability of halogen acids [61]. It has also been shown that weaker acids, such as hypochlorous acid, carboxylic acids, phenols, alcohols and hydrogen peroxide [61-64] also form complex ion-pairs. Such ion-pairs can often be beneficial in phase-transfer reactions, but the lipophilic nature of H-bonded complex ion-pairs with oxy acids, e.g. [Q+X HOAr] or [Q+X HO.CO.R], inhibits O-alkylation reactions necessitating the maintenance of the aqueous phase at pH > 7.0 with sodium or potassium carbonate to ensure effective formation of ethers or esterification [49,64]. [Pg.14]


See other pages where Hydrogen, effect formation is mentioned: [Pg.411]    [Pg.319]    [Pg.325]    [Pg.286]    [Pg.214]    [Pg.123]    [Pg.272]    [Pg.906]    [Pg.146]    [Pg.422]    [Pg.429]    [Pg.561]    [Pg.201]    [Pg.90]    [Pg.258]    [Pg.523]    [Pg.524]    [Pg.530]    [Pg.274]    [Pg.561]    [Pg.164]    [Pg.221]    [Pg.570]    [Pg.347]    [Pg.278]    [Pg.141]    [Pg.26]    [Pg.51]    [Pg.241]    [Pg.273]    [Pg.104]    [Pg.154]    [Pg.20]    [Pg.52]    [Pg.136]    [Pg.489]    [Pg.869]    [Pg.208]    [Pg.28]    [Pg.388]    [Pg.1054]    [Pg.181]   
See also in sourсe #XX -- [ Pg.5 , Pg.202 ]




SEARCH



Benzene, carbon formation, hydrogen effect

Hydrogen bond formation, effect

Hydrogen formation

Hydrogenation formation

Hydrogenations formate

© 2024 chempedia.info