Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen earth

Iron is a relatively abundant element in the universe. It is found in the sun and many types of stars in considerable quantity. Its nuclei are very stable. Iron is a principal component of a meteorite class known as siderites and is a minor constituent of the other two meteorite classes. The core of the earth — 2150 miles in radius — is thought to be largely composed of iron with about 10 percent occluded hydrogen. The metal is the fourth most abundant element, by weight that makes up the crust of the earth. [Pg.57]

In the sodium atom pairs of 3/2 states result from the promotion of the 3s valence electron to any np orbital with n > 2. It is convenient to label the states with this value of n, as n P 1/2 and n f 3/2, the n label being helpful for states that arise when only one electron is promoted and the unpromoted electrons are either in filled orbitals or in an x orbital. The n label can be used, therefore, for hydrogen, the alkali metals, helium and the alkaline earths. In other atoms it is usual to precede the state symbols by the configuration of the electrons in unfilled orbitals, as in the 2p3p state of carbon. [Pg.215]

So far we have considered only hydrogen, helium, the alkali metals and the alkaline earth metals but the selection rules and general principles encountered can be extended quite straightforwardly to any other atom. [Pg.222]

Properties. Lithium fluoride [7789-24-4] LiF, is a white nonhygroscopic crystaUine material that does not form a hydrate. The properties of lithium fluoride are similar to the aLkaline-earth fluorides. The solubility in water is quite low and chemical reactivity is low, similar to that of calcium fluoride and magnesium fluoride. Several chemical and physical properties of lithium fluoride are listed in Table 1. At high temperatures, lithium fluoride hydroly2es to hydrogen fluoride when heated in the presence of moisture. A bifluoride [12159-92-17, LiF HF, which forms on reaction of LiF with hydrofluoric acid, is unstable to loss of HF in the solid form. [Pg.206]

It is easy to reduce anhydrous rare-earth hatides to the metal by reaction of mote electropositive metals such as calcium, lithium, sodium, potassium, and aluminum. Electrolytic reduction is an alternative in the production of the light lanthanide metals, including didymium, a Nd—Pt mixture. The rare-earth metals have a great affinity for oxygen, sulfur, nitrogen, carbon, silicon, boron, phosphoms, and hydrogen at elevated temperature and remove these elements from most other metals. [Pg.541]

Laser isotope separation techniques have been demonstrated for many elements, including hydrogen, boron, carbon, nitrogen, oxygen, sHicon, sulfur, chlorine, titanium, selenium, bromine, molybdenum, barium, osmium, mercury, and some of the rare-earth elements. The most significant separation involves uranium, separating uranium-235 [15117-96-1], from uranium-238 [7440-61-1], (see Uranium and uranium compounds). The... [Pg.19]

AHoy M16630 (ZE63A) which contains rare-earth metals and zinc, is designed to take advantage of a newer he at-treatment technique involving inward diffusion of hydrogen and formation of zirconium hydride [7704-99-6]. The alloy is heated in hydrogen at 480°C for 10, 24, or 72 hours for 6.3,... [Pg.328]

Alkaline earth metal alkoxides decompose to carbonates, olefins, hydrogen, and methane calcium alkoxides give ketones (65). For aluminum alkoxides, thermal stability decreases as follows primary > secondary > tertiary the respective decomposition temperatures are ca 320°C, 250°C, and 140°C. Decomposition products are ethers, alcohols, and olefins. [Pg.24]

Bina Selenides. Most biaary selenides are formed by beating selenium ia the presence of the element, reduction of selenites or selenates with carbon or hydrogen, and double decomposition of heavy-metal salts ia aqueous solution or suspension with a soluble selenide salt, eg, Na2Se or (NH 2S [66455-76-3]. Atmospheric oxygen oxidizes the selenides more rapidly than the corresponding sulfides and more slowly than the teUurides. Selenides of the alkah, alkaline-earth metals, and lanthanum elements are water soluble and readily hydrolyzed. Heavy-metal selenides are iasoluble ia water. Polyselenides form when selenium reacts with alkah metals dissolved ia hquid ammonia. Metal (M) hydrogen selenides of the M HSe type are known. Some heavy-metal selenides show important and useful electric, photoelectric, photo-optical, and semiconductor properties. Ferroselenium and nickel selenide are made by sintering a mixture of selenium and metal powder. [Pg.332]

Fused basic salts and basic oxides react with vitreous siUca at elevated temperatures. Reaction with alkaline-earth oxides takes place at approximately 900°C. Hahdes tend to dissolve vitreous siUca at high temperatures fluorides are the most reactive (95). Dry halogen gases do not react with vitreous siUca below 300°C. Hydrogen fluoride, however, readily attacks vitreous siUca. [Pg.501]

Hydrogenation. Gas-phase catalytic hydrogenation of succinic anhydride yields y-butyrolactone [96-48-0] (GBL), tetrahydrofiiran [109-99-9] (THF), 1,4-butanediol (BDO), or a mixture of these products, depending on the experimental conditions. Catalysts mentioned in the Hterature include copper chromites with various additives (72), copper—zinc oxides with promoters (73—75), and mthenium (76). The same products are obtained by hquid-phase hydrogenation catalysts used include Pd with various modifiers on various carriers (77—80), Ru on C (81) or Ru complexes (82,83), Rh on C (79), Cu—Co—Mn oxides (84), Co—Ni—Re oxides (85), Cu—Ti oxides (86), Ca—Mo—Ni on diatomaceous earth (87), and Mo—Ba—Re oxides (88). Chemical reduction of succinic anhydride to GBL or THF can be performed with 2-propanol in the presence of Zr02 catalyst (89,90). [Pg.535]

Sulfur constitutes about 0.052 wt % of the earth s cmst. The forms in which it is ordinarily found include elemental or native sulfur in unconsohdated volcanic rocks, in anhydrite over salt-dome stmctures, and in bedded anhydrite or gypsum evaporate basin formations combined sulfur in metal sulfide ores and mineral sulfates hydrogen sulfide in natural gas organic sulfur compounds in petroleum and tar sands and a combination of both pyritic and organic sulfur compounds in coal (qv). [Pg.115]

Sulfur combines directly with hydrogen at 150—200°C to form hydrogen sulfide. Molten sulfur reacts with hydrogen to form hydrogen polysulfides. At red heat, sulfur and carbon unite to form carbon disulfide. This is a commercially important reaction in Europe, although natural gas is used to produce carbon disulfide in the United States. In aqueous solutions of alkaU carbonates and alkaU and alkaline-earth hydroxides, sulfur reacts to form sulfides, polysulfides, thiosulfates, and sulfites. [Pg.117]

Manufacture. Small cylinders of hydrogen sulfide are readily available for laboratory purposes, but the gas can also be easily synthesized by action of dilute sulfuric or hydrochloric acid on iron sulfide, calcium sulfide [20548-54-3], zinc sulfide [1314-98-3], or sodium hydrosulfide [16721 -80-5]. The reaction usually is mn in a Kipp generator, which regulates the addition of the acid to maintain a steady hydrogen sulfide pressure. Small laboratory quantities of hydrogen sulfide can be easily formed by heating at 280—320°C a mixture of sulfur and a hydrogen-rich, nonvolatile aUphatic substance, eg, paraffin. Gas evolution proceeds more smoothly if asbestos or diatomaceous earth is also present. [Pg.135]


See other pages where Hydrogen earth is mentioned: [Pg.80]    [Pg.1554]    [Pg.111]    [Pg.445]    [Pg.4]    [Pg.198]    [Pg.196]    [Pg.210]    [Pg.1030]    [Pg.125]    [Pg.9]    [Pg.10]    [Pg.150]    [Pg.167]    [Pg.300]    [Pg.300]    [Pg.411]    [Pg.411]    [Pg.412]    [Pg.432]    [Pg.437]    [Pg.437]    [Pg.453]    [Pg.472]    [Pg.299]    [Pg.290]    [Pg.477]    [Pg.27]    [Pg.475]    [Pg.330]    [Pg.66]    [Pg.209]    [Pg.220]    [Pg.499]    [Pg.309]    [Pg.52]    [Pg.389]   
See also in sourсe #XX -- [ Pg.309 ]

See also in sourсe #XX -- [ Pg.557 , Pg.557 ]




SEARCH



Alkaline earth hydrogen ¥ zeolites

Alkaline earth metals reaction with hydrogen

Earth hydrogen content changes

Hydrogen from selected rare earth

Hydrogen in rare-earth metals, including RH2 phases

Hydrogen loss from earth

Hydrogen on Earth

Hydrogen rare-earth compounds

Matsuoka and C. Iwakura, Rare earth intermetallics for metal-hydrogen batteries

Rare earth-hydrogen-carbon

The Rare Earth-Hydrogen Compounds

© 2024 chempedia.info