Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrodynamics turbulent flow

If these assumptions are satisfied then the ideas developed earlier about the mean free path can be used to provide qualitative but useful estimates of the transport properties of a dilute gas. While many varied and complicated processes can take place in fluid systems, such as turbulent flow, pattern fonnation, and so on, the principles on which these flows are analysed are remarkably simple. The description of both simple and complicated flows m fluids is based on five hydrodynamic equations, die Navier-Stokes equations. These equations, in trim, are based upon the mechanical laws of conservation of particles, momentum and energy in a fluid, together with a set of phenomenological equations, such as Fourier s law of themial conduction and Newton s law of fluid friction. When these phenomenological laws are used in combination with the conservation equations, one obtains the Navier-Stokes equations. Our goal here is to derive the phenomenological laws from elementary mean free path considerations, and to obtain estimates of the associated transport coefficients. Flere we will consider themial conduction and viscous flow as examples. [Pg.671]

Computer simulation of the reactor kinetic hydrodynamic and transport characteristics reduces dependence on phenomenological representations and idealized models and provides visual representations of reactor performance. Modem quantitative representations of laminar and turbulent flows are combined with finite difference algorithms and other advanced mathematical methods to solve coupled nonlinear differential equations. The speed and reduced cost of computation, and the increased cost of laboratory experimentation, make the former increasingly usehil. [Pg.513]

Chain degradation in turbulent flow has been frequently reported in conjunction with drag reduction and in simple shear flow at high Reynolds numbers [187], Using poly(decyl methacrylate) under conditions of turbulent flow in a capillary tube, Muller and Klein observed that the hydrodynamic volume, [r ] M, is the determining factor for the degradation rate in various solvents and at various polymer concentrations [188], The initial MWD of the polymers used in their experiments are, however, too broad (Mw/Iiln = 5 ) to allow for a precise... [Pg.166]

In Spite of the existence of numerous experimental and theoretical investigations, a number of principal problems related to micro-fluid hydrodynamics are not well-studied. There are contradictory data on the drag in micro-channels, transition from laminar to turbulent flow, etc. That leads to difficulties in understanding the essence of this phenomenon and is a basis for questionable discoveries of special microeffects (Duncan and Peterson 1994 Ho and Tai 1998 Plam 2000 Herwig 2000 Herwig and Hausner 2003 Gad-el-Hak 2003). The latter were revealed by comparison of experimental data with predictions of a conventional theory based on the Navier-Stokes equations. The discrepancy between these data was interpreted as a display of new effects of flow in micro-channels. It should be noted that actual conditions of several experiments were often not identical to conditions that were used in the theoretical models. For this reason, the analysis of sources of disparity between the theory and experiment is of significance. [Pg.104]

In the absence of diffusion, all hydrodynamic models show infinite variances. This is a consequence of the zero-slip condition of hydrodynamics that forces Vz = 0 at the walls of a vessel. In real systems, molecular diffusion will ultimately remove molecules from the stagnant regions near walls. For real systems, W t) will asymptotically approach an exponential distribution and will have finite moments of all orders. However, molecular diffusivities are low for liquids, and may be large indeed. This fact suggests the general inappropriateness of using to characterize the residence time distribution in a laminar flow system. Turbulent flow is less of a problem due to eddy diffusion that typically results in an exponentially decreasing tail at fairly low multiples of the mean residence time. [Pg.558]

For certain conditions, the hydrodynamic stresses generated by the very rapid fluctuations in turbulent flow, the so-called Reynolds stresses, can be estimated as [70] ... [Pg.146]

Actual concentration profiles (Fig. 1.28) in the very near vicinity of a mass transfer interface are complex, since they result from an interaction between the mass transfer process and the local hydrodynamic conditions, which change gradually from stagnant flow, close to the interface, to more turbulent flow within the bulk phases. [Pg.60]

For axial capillary flow in the z direction the Reynolds number, Re = vzmaxI/v = inertial force/viscous force , characterizes the flow in terms of the kinematic viscosity v the average axial velocity, vzmax, and capillary cross sectional length scale l by indicating the magnitude of the inertial terms on the left-hand side of Eq. (5.1.5). In capillary systems for Re < 2000, flow is laminar, only the axial component of the velocity vector is present and the velocity is rectilinear, i.e., depends only on the cross sectional coordinates not the axial position, v= [0,0, vz(x,y). In turbulent flow with Re > 2000 or flows which exhibit hydrodynamic instabilities, the non-linear inertial term generates complexity in the flow such that in a steady state v= [vx(x,y,z), vy(x,y,z), vz(x,y,z). ... [Pg.514]

Numerous turbulent mass-transfer relationships are given in Eqs. (39)-(50), Table VII. Although the most important ones in practical applications are those for channels and tubes, several other configurations also have been investigated because of their hydrodynamic interest. Generally, it is not possible to predict mass-transfer rates quantitatively by recourse to turbulent flow theory. An exception to this is for the region of developing mass transfer, where a Leveque-type correlation between the mass-transfer coefficient and friction coefficient/can be established ... [Pg.269]

Just as for laminar flow, a minimum hydrodynamic entry length (Le) is required for the flow profile to become fully developed in turbulent flow. This length depends on the exact nature of the flow conditions at the tube entrance but has been shown to be on the order of Le/D = 0.623/VRe5. For example, if /VRe = 50,000 then Le/D = 10 (approximately). [Pg.162]

The rate of agitation, stirring, or flow of solvent, if the dissolution is transport-controlled, but not when the dissolution is reaction-con-trolled. Increasing the agitation rate corresponds to an increased hydrodynamic flow rate and to an increased Reynolds number [104, 117] and results in a reduction in the thickness of the diffusion layer in Eqs. (43), (45), (46), (49), and (50) for transport control. Therefore, an increased agitation rate will increase the dissolution rate, if the dissolution is transport-controlled (Eqs. (41 16,49,51,52), but will have no effect if the dissolution is reaction-controlled. Turbulent flow (which occurs at Reynolds numbers exceeding 1000 to 2000 and which is a chaotic phenomenon) may cause irreproducible and/or unpredictable dissolution rates [104,117] and should therefore be avoided. [Pg.362]

Welton, W. C. and S. B. Pope (1997). PDF model calculations of compressible turbulent flows using smoothed particle hydrodynamics. Journal of Computational Physics 134,150-168. [Pg.425]

Figure 7.4 Representations of hydrodynamic flow, showing (a) laminar flow through a smooth pipe and (b) turbulent flow, e.g. as caused by an obstruction to movement in the pipe. The length of each arrow represents the velocity of the increment of solution. Notice in (a) how the flow front is curved (known as Poiseuille flow ), and in (b) how a solution can have both laminar and turbulent portions, with the greater pressure of solution flow adjacent to the obstruction. Figure 7.4 Representations of hydrodynamic flow, showing (a) laminar flow through a smooth pipe and (b) turbulent flow, e.g. as caused by an obstruction to movement in the pipe. The length of each arrow represents the velocity of the increment of solution. Notice in (a) how the flow front is curved (known as Poiseuille flow ), and in (b) how a solution can have both laminar and turbulent portions, with the greater pressure of solution flow adjacent to the obstruction.
Turbulent mass transfer near a wall can be represented by various physical models. In one such model the turbulent flow is assumed to be composed of a succession of short, steady, laminar motions along a plate. The length scale of the laminar path is denoted by x0 and the velocity of the liquid element just arrived at the wall by u0. Along each path of length x0, the motion is approximated by the quasi-steady laminar flow of a semiinfinite fluid along a plate. This implies that the hydrodynamic and diffusion boundary layers which develop in each of the paths are assumed to be smaller than the thickness of the fluid elements brought to the wall by turbulent fluctuations. Since the diffusion coefficient is small in liquids, the depth of penetration by diffusion in the liquid element is also small. Therefore one can use the first terms in the Taylor expansion of the Blasius expressions for the velocity components. The rate of mass transfer in the laminar microstructure can be obtained by solving the equation... [Pg.49]

It should be recognized that the boundary conditions of the problem will establish the value of the hydrodynamic velocity, u. In the case of most turbulent flows the indirect influence of molecular diffusion on the hydro-dynamic velocity can be neglected. It should be emphasized that the hydrodynamic velocity is the time-average point velocity in Reynolds sense (R2). Under unsteady, nonuniform conditions of flow between parallel plates the material balance may be expressed for turbulent flow in the following form ... [Pg.275]

In the area of hydrodynamics the term drag reduction has become a familiar name for characterizing the reduction of friction in turbulent flow through pipes. This is not caused by an improvement in the wall properties as this would only lead to a decrease in friction of a few percent. It is possible, however, to reduce the degree of friction in turbulent flow by a considerable extent, if small amounts of a suitable additive in a concentration range of only a few parts per million by weight are used a reduction in friction of 80 percent can be reached. A tremendous change in the flow field will result, while turbulent flow still remains. [Pg.101]

Kenis PR (1971) Turbulent flow friction reduction effectiveness and hydrodynamic degradation of polysaccharides and synthetic polymers J Appl Polym Sci 15 607... [Pg.161]

These simple and mostly intuitive arguments apply mainly to chemical and biological reaction engineering systems. For other systems such as fluid flow systems, the sources and causes of bifurcation and chaos can be quite different. It is well established that the transition from laminar flow to turbulent flow is a transition from nonchaotic to chaotic behavior. The synergetic interaction between hydrodynamically induced bifurcation and chaos and that resulting from chemical and biological reaction/diffusion is not well studied and calls for an extensive multidisciplinary research effort. [Pg.570]

The intense heat dissipated by viscous flow near the walls of a tubular reactor leads to an increase in local temperature and acceleration of the chemical reaction, which also promotes an increase in temperature the local situation then propagates to the axis of the tubular reactor. This effect, which was discovered theoretically, may occur in practice in the flow of a highly viscous liquid with relatively weak dependence of viscosity on degree of conversion. However, it is questionable whether this approach could be applied to the flow of ethylene in a tubular reactor as was proposed in the original publication.199 In turbulent flow of a monomer, the near-wall zone is not physically distinct in a hydrodynamic sense, while for a laminar flow the growth of viscosity leads to a directly opposite tendency - a slowing-down of the flow near the walls. In addition, the nature of the viscosity-versus-conversion dependence rj(P) also influences the results of theoretical calculations. For example, although this factor was included in the calculations in Ref.,200 it did not affect the flow patterns because of the rather weak q(P) dependence for the system that was analyzed. [Pg.148]


See other pages where Hydrodynamics turbulent flow is mentioned: [Pg.198]    [Pg.198]    [Pg.174]    [Pg.220]    [Pg.321]    [Pg.4]    [Pg.5]    [Pg.115]    [Pg.179]    [Pg.273]    [Pg.328]    [Pg.143]    [Pg.146]    [Pg.151]    [Pg.135]    [Pg.149]    [Pg.200]    [Pg.201]    [Pg.202]    [Pg.398]    [Pg.131]    [Pg.155]    [Pg.62]    [Pg.93]    [Pg.118]    [Pg.146]    [Pg.155]    [Pg.176]    [Pg.236]    [Pg.107]    [Pg.114]   
See also in sourсe #XX -- [ Pg.114 ]




SEARCH



Hydrodynamic turbulence

Hydrodynamics turbulent

Turbulence flow

Turbulent flow

Turbulent flow Turbulence

© 2024 chempedia.info