Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrodynamic macroscopic

Surface waves at an interface between two innniscible fluids involve effects due to gravity (g) and surface tension (a) forces. (In this section, o denotes surface tension and a denotes the stress tensor. The two should not be coiifiised with one another.) In a hydrodynamic approach, the interface is treated as a sharp boundary and the two bulk phases as incompressible. The Navier-Stokes equations for the two bulk phases (balance of macroscopic forces is the mgredient) along with the boundary condition at the interface (surface tension o enters here) are solved for possible hamionic oscillations of the interface of the fomi, exp [-(iu + s)t + i V-.r], where m is the frequency, is the damping coefficient, s tlie 2-d wavevector of the periodic oscillation and. ra 2-d vector parallel to the surface. For a liquid-vapour interface which we consider, away from the critical point, the vapour density is negligible compared to the liquid density and one obtains the hydrodynamic dispersion relation for surface waves + s>tf. The temi gq in the dispersion relation arises from... [Pg.725]

The relation between the microscopic friction acting on a molecule during its motion in a solvent enviromnent and macroscopic bulk solvent viscosity is a key problem affecting the rates of many reactions in condensed phase. The sequence of steps leading from friction to diflfiision coefficient to viscosity is based on the general validity of the Stokes-Einstein relation and the concept of describing friction by hydrodynamic as opposed to microscopic models involving local solvent structure. In the hydrodynamic limit the effect of solvent friction on, for example, rotational relaxation times of a solute molecule is [ ]... [Pg.853]

Thus one must rely on macroscopic theories and empirical adjustments for the determination of potentials of mean force. Such empirical adjustments use free energy data as solubilities, partition coefficients, virial coefficients, phase diagrams, etc., while the frictional terms are derived from diffusion coefficients and macroscopic theories for hydrodynamic interactions. In this whole field of enquiry progress is slow and much work (and thought ) will be needed in the future. [Pg.22]

Existing statistical methods permit prediction of macroscopic results of the processes without complete description of the microscopic phenomena. They are helpful in establishing the hydrodynamic relations of liquid flow through porous bodies, the evaluation of filtration quality with pore clogging, description of particle distributions and in obtaining geometrical parameters of random layers of solid particles. [Pg.80]

In modeling an RO unit, two aspects should be considered membrane transport equations and hydrodynamic modeling of the RO module. The membrane transport equations represent the phenomena (water permeation, solute flux, etc.) taking place at the membrane surface. On the other hand, the hydrodynamic model deals with the macroscopic transport of the various species along with the momentum and energy associated with them. In recent years, a number of mathematical... [Pg.265]

Molecular dynamics, in contrast to MC simulations, is a typical model in which hydrodynamic effects are incorporated in the behavior of polymer solutions and may be properly accounted for. In the so-called nonequilibrium molecular dynamics method [54], Newton s equations of a (classical) many-particle problem are iteratively solved whereby quantities of both macroscopic and microscopic interest are expressed in terms of the configurational quantities such as the space coordinates or velocities of all particles. In addition, shear flow may be imposed by the homogeneous shear flow algorithm of Evans [56]. [Pg.519]

Most theoretical studies of osmosis and reverse osmosis have been carried out using macroscopic continuum hydrodynamics [5,8-13]. The models used include those that treat the wall as either nonporous or porous. In the nonporous models the membrane surface is assumed homogeneous and nonporous. Transport occurs by the molecules dissolving in the membrane phase and then diffusing through the membrane. Mass transfer across the membrane in these models is usually described using the solution-diffusion... [Pg.779]

Hydrodynamic Dispersion Macroscopic dispersion is produced in a capillar) even in tlie absence of molecular diffusion because of the velocity profile produced by the adherence of the fluid to tlie wall. Tlris causes fluid particles at different radial positions to move relative to one anotlier, witli tlie result tliat a series of mixing-cup samples at tlie end of tlie capillary e.xhibits dispersion. [Pg.367]

Introduction.—Statistical physics deals with the relation between the macroscopic laws that describe the internal state of a system and the dynamics of the interactions of its microscopic constituents. The derivation of the nonequilibrium macroscopic laws, such as those of hydrodynamics, from the microscopic laws has not been developed as generally as in the equilibrium case (the derivation of thermodynamic relations by equilibrium statistical mechanics). The microscopic analysis of nonequilibrium phenomena, however, has achieved a considerable degree of success for the particular case of dilute gases. In this case, the kinetic theory, or transport theory, allows one to relate the transport of matter or of energy, for example (as in diffusion, or heat flow, respectively), to the mechanics of the molecules that make up the system. [Pg.1]

We present and discuss results for MD modeling of fluid systems. We restrict our discussion to systems which are in a macroscopically steady state, thus eliminating the added complexity of any temporal behavior. We start with a simple fluid system where the hydrodynamic equations are exactly solvable. We conclude with fluid systems for which the hydrodynamic equations are nonlinear. Solutions for these equations can be obtained only through numerical methods. [Pg.249]

The results presented here are quite remarkable. The theory underlying derivation of the hydrodynamic equations assumes that all gradients and forces acting on the fluid are small. The MD fluids are under the influence of extremely large gradients and forces. Yet, we find results which are in both qualitative and quantitative agreement with macroscopic predictions. The appearance of spatial structure on such a small scale (10 cm) provides strong indications that fluid dynamics can be understood from a microscopic viewpoint. [Pg.251]

One would prefer to be able to calculate aU of them by molecular dynamics simulations, exclusively. This is unfortunately not possible at present. In fact, some indices p, v of Eq. (6) refer to electronically excited molecules, which decay through population relaxation on the pico- and nanosecond time scales. The other indices p, v denote molecules that remain in their electronic ground state, and hydrodynamic time scales beyond microseconds intervene. The presence of these long times precludes the exclusive use of molecular dynamics, and a recourse to hydrodynamics of continuous media is inevitable. This concession has a high price. Macroscopic hydrodynamics assume a local thermodynamic equilibrium, which does not exist at times prior to 100 ps. These times are thus excluded from these studies. [Pg.271]

Table 1.3 Comparison of miscellaneous dimensionless groups characterizing different hydrodynamic regimes in macroscopic vessels and micro reactors. Table 1.3 Comparison of miscellaneous dimensionless groups characterizing different hydrodynamic regimes in macroscopic vessels and micro reactors.
Perhaps the best starting point in a review of the nonequilibrium field, and certainly the work that most directly influenced the present theory, is Onsager s celebrated 1931 paper on the reciprocal relations [10]. This showed that the symmetry of the linear hydrodynamic transport matrix was a consequence of the time reversibility of Hamilton s equations of motion. This is an early example of the overlap between macroscopic thermodynamics and microscopic statistical mechanics. The consequences of time reversibility play an essential role in the present nonequilibrium theory, and in various fluctuation and work theorems to be discussed shortly. [Pg.4]

There are several attractive features of such a mesoscopic description. Because the dynamics is simple, it is both easy and efficient to simulate. The equations of motion are easily written and the techniques of nonequilibriun statistical mechanics can be used to derive macroscopic laws and correlation function expressions for the transport properties. Accurate analytical expressions for the transport coefficient can be derived. The mesoscopic description can be combined with full molecular dynamics in order to describe the properties of solute species, such as polymers or colloids, in solution. Because all of the conservation laws are satisfied, hydrodynamic interactions, which play an important role in the dynamical properties of such systems, are automatically taken into account. [Pg.91]

In addition to the fact that MPC dynamics is both simple and efficient to simulate, one of its main advantages is that the transport properties that characterize the behavior of the macroscopic laws may be computed. Furthermore, the macroscopic evolution equations can be derived from the full phase space Markov chain formulation. Such derivations have been carried out to obtain the full set of hydrodynamic equations for a one-component fluid [15, 18] and the reaction-diffusion equation for a reacting mixture [17]. In order to simplify the presentation and yet illustrate the methods that are used to carry out such derivations, we restrict our considerations to the simpler case of the derivation of the diffusion equation for a test particle in the fluid. The methods used to derive this equation and obtain the autocorrelation function expression for the diffusion coefficient are easily generalized to the full set of hydrodynamic equations. [Pg.99]

Since MPC dynamics yields the hydrodynamic equations on long distance and time scales, it provides a mesoscopic simulation algorithm for investigation of fluid flow that complements other mesoscopic methods. Since it is a particle-based scheme it incorporates fluctuations, which are essential in many applications. For macroscopic fluid flow averaging is required to obtain the deterministic flow fields. In spite of the additional averaging that is required the method has the advantage that it is numerically stable, does not suffer from lattice artifacts in the structure of the Navier-Stokes equations, and boundary conditions are easily implemented. [Pg.107]

If the Brownian particles were macroscopic in size, the solvent could be treated as a viscous continuum, and the particles would couple to the continuum solvent through appropriate boundary conditions. Then the two-particle friction may be calculated by solving the Navier-Stokes equations in the presence of the two fixed particles. The simplest approximation for hydrodynamic interactions is through the Oseen tensor [54],... [Pg.119]

Multiparticle collision dynamics describes the interactions in a many-body system in terms of effective collisions that occur at discrete time intervals. Although the dynamics is a simplified representation of real dynamics, it conserves mass, momentum, and energy and preserves phase space volumes. Consequently, it retains many of the basic characteristics of classical Newtonian dynamics. The statistical mechanical basis of multiparticle collision dynamics is well established. Starting with the specification of the dynamics and the collision model, one may verify its dynamical properties, derive macroscopic laws, and, perhaps most importantly, obtain expressions for the transport coefficients. These features distinguish MPC dynamics from a number of other mesoscopic schemes. In order to describe solute motion in solution, MPC dynamics may be combined with molecular dynamics to construct hybrid schemes that can be used to explore a variety of phenomena. The fact that hydrodynamic interactions are properly accounted for in hybrid MPC-MD dynamics makes it a useful tool for the investigation of polymer and colloid dynamics. Since it is a particle-based scheme it incorporates fluctuations so that the reactive and nonreactive dynamics in small systems where such effects are important can be studied. [Pg.139]

Monte Carlo heat flow simulation, nonequilibrium molecular dynamics, 73-74, 77-81 multiparticle collision dynamics hydrodynamic equations, 105-107 macroscopic laws and transport coefficients, 102-104 single-particle friction and diffusion, 114-118... [Pg.281]

Multiparticle collision dynamics (continued) hydrodynamic equations, 104—107 flow simulation, 107 friction interactions, 118-121 immiscible fluids, 138-139 macroscopic laws and transport coefficients, 99-104... [Pg.284]

The cumulative effects of these barriers and the resistance to flow they produce were computed, and it was demonstrated these macroscopically derived laws applied at molecular dimensions were able to provide semiquantitative agreement with the available data. While further tests of these models will undoubtedly provide refinements to our understanding, the agreement supports our understanding of the basic phenomena regulating transport of therapeutically active substances through these barriers and the role of disease states that impact hydrodynamic pressure on the efficacy of drug delivery. [Pg.440]

Originally, the concept of the Prandtl boundary layer was developed for hydraulically even bodies. It is assumed that any characteristic length L on the particle surface is much greater than the thickness (<5hl) of the boundary layer itself (L > Ojil) Provided this assumption is fulfilled, the concept can be adapted to curved bodies and spheres, including real drug particles. Furthermore, the classical ( macroscopic ) concept of the hydrodynamic boundary layer is valid solely for high Reynolds numbers of Re>104 (14,15). This constraint was overcome for the microscopic hydrodynamics of dissolving particles by the convective diffusion theory (9). [Pg.138]

Recent times have seen much discussion of the choice of hydrodynamic boundary conditions that can be employed in a description of the solid-liquid interface. For some time, the no-slip approximation was deemed acceptable and has constituted something of a dogma in many fields concerned with fluid mechanics. This assumption is based on observations made at a macroscopic level, where the mean free path of the hquid being considered is much smaller... [Pg.61]


See other pages where Hydrodynamic macroscopic is mentioned: [Pg.75]    [Pg.83]    [Pg.75]    [Pg.83]    [Pg.378]    [Pg.2382]    [Pg.465]    [Pg.486]    [Pg.494]    [Pg.505]    [Pg.24]    [Pg.98]    [Pg.22]    [Pg.535]    [Pg.542]    [Pg.4]    [Pg.120]    [Pg.280]    [Pg.283]    [Pg.439]    [Pg.803]    [Pg.804]    [Pg.365]    [Pg.24]    [Pg.514]    [Pg.89]    [Pg.158]   
See also in sourсe #XX -- [ Pg.267 ]




SEARCH



Dispersion, hydrodynamic macroscopic

© 2024 chempedia.info