Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons, with Olefins

Flowever, information concerning the characteristics of these systems under the conditions of a continuous process is still very limited. From a practical point of view, the concept of ionic liquid multiphasic catalysis can be applicable only if the resultant catalytic lifetimes and the elution losses of catalytic components into the organic or extractant layer containing products are within commercially acceptable ranges. To illustrate these points, two examples of applications mn on continuous pilot operation are described (i) biphasic dimerization of olefins catalyzed by nickel complexes in chloroaluminates, and (ii) biphasic alkylation of aromatic hydrocarbons with olefins and light olefin alkylation with isobutane, catalyzed by acidic chloroaluminates. [Pg.271]

Catalytic Condensation Also known colloquially as CATCON. A process for oligomerizing olefins, or alkylating aromatic hydrocarbons with olefins. The catalyst is a solid containing free or combined phosphoric acid. Developed by UOP. [Pg.54]

Several metal oxides could be used as acid catalysts, although zeolites and zeo-types are mainly preferred as an alternative to liquid acids (Figure 13.1). This is a consequence of the possibility of tuning the acidity of microporous materials as well as the shape selectivity observed with zeolites that have favored their use in new catalytic processes. However, a solid with similar or higher acid strength than 100% sulfuric acid (the so-called superacid materials) could be preferred in some processes. From these solid catalysts, nation, heteropolyoxometalates, or sulfated metal oxides have been extensively studied in the last ten years (Figure 13.2). Their so-called superacid character has favored their use in a large number of acid reactions alkane isomerization, alkylation of isobutene, or aromatic hydrocarbons with olefins, acylation, nitrations, and so forth. [Pg.253]

Acidic mixed oxides, including alumina and silica, as well as natural clays, and natural or synthetic aluminosilicates, are sufficiently (although mildly) hydrated to be effective as solid protic acids for the alkylation of aromatic hydrocarbons with olefins. The most studied of these catalysts are zeolites that are used in industrial... [Pg.232]

The catalytic alkylation of saturated hydrocarbons with olefins was discovered and developed by Ipatieff and his co-workers in the laboratories of the Universal Oil Products Company (Ipatieff, 1). Experiments were carried out in June, 1932, by Ipatieff and Pines, using aluminum chloride as the catalyst, hydrogen chloride as a promoter, and hexane and ethylene as the reactants. These experiments having given positive results, they were repeated by Komarewsky, who then also investigated the alkylation of naphthenes. The alkylation of hexane was studied quantitatively by Grosse, who extended the reaction to other paraffins and catalysts, particularly boron fluoride. [Pg.27]

Nickel carbide is not stable at steam reforming conditions. The nucleation of the carbon whisker takes place when the concentration of carbon dissolved in the nickel crystal is higher than that at equilibrium. This is reflected by the kinetics (3). After an induction period, the carbon growth proceeds with constant rate (Fig. 1) (8,9). The rate of dissociation depends strongly on type of hydrocarbon with olefins and acetylene being the most reactive (9). [Pg.2]

A fundamental difference exists between conventional acid-catalyzed and superacidic hydrocarbon chemistry. In the former, trivalent car-benium ions are always in equilibrium with olefins, which play the key role, whereas in the latter, hydrocarbon transformation can take place without the involvement of olefins through the intermediacy of five-coordinate carbocations. [Pg.165]

Acetyl chlotide reacts with aromatic hydrocarbons and olefins in suitably inert solvents, such as carbon disulfide or petroleum ether, to furnish ketones (16). These reactions ate catalyzed by anhydrous aluminum chlotide and by other inorganic chlotides (17). The order of catalytic activity increases in the order... [Pg.81]

The use of silver fluoroborate as a catalyst or reagent often depends on the precipitation of a silver haUde. Thus the silver ion abstracts a CU from a rhodium chloride complex, ((CgH )2As)2(CO)RhCl, yielding the cationic rhodium fluoroborate [30935-54-7] hydrogenation catalyst (99). The complexing tendency of olefins for AgBF has led to the development of chemisorption methods for ethylene separation (100,101). Copper(I) fluoroborate [14708-11-3] also forms complexes with olefins hydrocarbon separations are effected by similar means (102). [Pg.168]

Hydrogen atoms ate thought to play a principal role in the mechanistic steps of many reactions, including hydrocarbon thermolysis (119). Some reactions of atomic hydrogen with olefins and paraffins ate the following (120—122) ... [Pg.417]

Tetracyanoethylene is colorless but forms intensely colored complexes with olefins or aromatic hydrocarbons, eg, benzene solutions are yellow, xylene solutions are orange, and mesitylene solutions are red. The colors arise from complexes of a Lewis acid—base type, with partial transfer of a TT-electron from the aromatic hydrocarbon to TCNE (8). TCNE is conveniendy prepared in the laboratory from malononitrile [109-77-3] (1) by debromination of dibromoma1 ononitrile [1855-23-0] (2) with copper powder (9). The debromination can also be done by pyrolysis at ca 500°C (10). [Pg.403]

Isomerization is promoted by either acids or bases. Higher alkylbenzenes are isomerized in the presence of AlCb/HCl or BF3/HF olefins with most mineral acids, acid salts and silica-alumina saturated hydrocarbons with AlCb or AlBr,3 promoted by 0.1 percent of olefins. [Pg.2095]

Alkenes — Also known as olefins, and denoted as C H2 the compounds are unsaturated hydrocarbons with a single carbon-to-carbon double bond per molecule. The alkenes are very similar to the alkanes in boiling point, specific gravity, and other physical characteristics. Like alkanes, alkenes are at most only weakly polar. Alkenes are insoluble in water but quite soluble in nonpolar solvents like benzene. Because alkenes are mostly insoluble liquids that are lighter than water and flammable as well, water is not used to suppress fires involving these materials. Because of the double bond, alkenes are more reactive than alkanes. [Pg.170]

Through the 19.30s, Ipatieff led UOP in its effort to develop two catalytic processes for the production of high-octane fuel alkylation and polymerization— the first, a reaction of a hydrocarbon with an olefin (double-bonded compound) the second, the formation of long molecules from smaller ones. Both processes produce high-octane blending compounds that increase the quality of cracked gasoline. [Pg.680]

Synthesis gas is an important intermediate. The mixture of carbon monoxide and hydrogen is used for producing methanol. It is also used to synthesize a wide variety of hydrocarbons ranging from gases to naphtha to gas oil using Fischer Tropsch technology. This process may offer an alternative future route for obtaining olefins and chemicals. The hydroformylation reaction (Oxo synthesis) is based on the reaction of synthesis gas with olefins for the production of Oxo aldehydes and alcohols (Chapters 5, 7, and 8). [Pg.123]

In general, crude oils and natural gases are composed of a mixture of relatively unreactive hydrocarbons with variable amounts of nonhydrocarbon compounds. This mixture is essentially free from olefins. However, the C2 and heavier hydrocarbons from these two sources (natural gas and crude oil) can be converted to light olefins suitable as starting materials for petrochemicals production. [Pg.402]

A few further general examples of zinc catalytic activity or reactivity include the following. Other zinc-containing systems include a zinc phenoxide/nickel(0) catalytic system that can be used to carry out the chemo- and regioselective cyclotrimerization of monoynes.934 Zinc homoenolates have been used as novel nucleophiles in acylation and addition reactions and shown to have general utility.935,936 Iron/zinc species have been used in the oxidation of hydrocarbons, and the selectivity and conditions examined.362 There are implications for the mechanism of metal-catalyzed iodosylbenzene reactions with olefins from the observation that zinc triflate and a dizinc complex catalyze these reactions.937... [Pg.1231]

The data plotted in Figure 16.4a clearly show that CO conversion increases linearly upon increasing the H2/CO inlet ratio. Methane selectivity also increases with the H2/CO ratio, but the effect is less pronounced. On the contrary, the selectivity to both the heaviest hydrocarbons and olefins decreases upon increasing the... [Pg.300]

Peroxyl radicals can undergo various reactions, e.g., hydrogen abstraction, isomerization, decay, and addition to a double bond. Chain propagation in oxidized aliphatic, alkyl-aromatic, alicyclic hydrocarbons, and olefins with weak C—H bonds near the double bond proceeds according to the following reaction as a limiting step of the chain process [2 15] ... [Pg.73]

Hydropol A process for co-hydrogenating u-butenes with olefinic gasoline fractions. Developed by the Institut Frangais du Petiole as part of its polymer gasoline process. Hydrocarbon Process., 1980, 59(9), 219. [Pg.138]


See other pages where Hydrocarbons, with Olefins is mentioned: [Pg.102]    [Pg.102]    [Pg.55]    [Pg.286]    [Pg.212]    [Pg.621]    [Pg.102]    [Pg.102]    [Pg.55]    [Pg.286]    [Pg.212]    [Pg.621]    [Pg.184]    [Pg.162]    [Pg.556]    [Pg.242]    [Pg.53]    [Pg.310]    [Pg.444]    [Pg.66]    [Pg.235]    [Pg.60]    [Pg.77]    [Pg.98]    [Pg.349]    [Pg.202]    [Pg.205]    [Pg.144]    [Pg.160]    [Pg.341]   
See also in sourсe #XX -- [ Pg.227 , Pg.228 , Pg.229 ]




SEARCH



Hydrocarbons Olefins

Olefinic hydrocarbons

With Olefins

© 2024 chempedia.info