Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons nonpolarity

As the chain becomes longer, the alcohols become more like hydrocarbons (nonpolar) in their properties. [Pg.336]

Nonpolar or weakly-polar compounds are widely distributed in the geologic medium. Their interaction with water depends on the interrelation of polar and nonpolar groups in their composition. For instance, carboxylic acids include in their composition both hydrocarbon nonpolar portion and ionized carboxylic group. The latter is capable of forming hydrogen bonds, which facilitates the dissolution of acids in water. However, with the increase in length of the nonpolar hydrocarbon portion their solubihty noticeably declines. That is why fat acids with the number of carbon atoms more than 10 are practically insoluble in water. [Pg.304]

The physical properties of alkanes are typical of all hydrocarbons nonpolar, insoluble in water, less dense than water, and increasing melting and boiling points with increasing molecular weight. [Pg.59]

The behavior of insoluble monolayers at the hydrocarbon-water interface has been studied to some extent. In general, a values for straight-chain acids and alcohols are greater at a given film pressure than if spread at the water-air interface. This is perhaps to be expected since the nonpolar phase should tend to reduce the cohesion between the hydrocarbon tails. See Ref. 91 for early reviews. Takenaka [92] has reported polarized resonance Raman spectra for an azo dye monolayer at the CCl4-water interface some conclusions as to orientation were possible. A mean-held theory based on Lennard-Jones potentials has been used to model an amphiphile at an oil-water interface one conclusion was that the depth of the interfacial region can be relatively large [93]. [Pg.551]

In general arenes resemble other hydrocarbons in their physical properties They are nonpolar insoluble in water and less dense than water In the absence of polar sub stituents mtermolecular forces are weak and limited to van der Waals attractions of the induced dipole/mduced dipole type... [Pg.438]

The metal-ion complexmg properties of crown ethers are clearly evident m their effects on the solubility and reactivity of ionic compounds m nonpolar media Potassium fluoride (KF) is ionic and practically insoluble m benzene alone but dissolves m it when 18 crown 6 is present This happens because of the electron distribution of 18 crown 6 as shown m Figure 16 2a The electrostatic potential surface consists of essentially two regions an electron rich interior associated with the oxygens and a hydrocarbon like exterior associated with the CH2 groups When KF is added to a solution of 18 crown 6 m benzene potassium ion (K ) interacts with the oxygens of the crown ether to form a Lewis acid Lewis base complex As can be seen m the space filling model of this... [Pg.669]

FIGURE 19 5 Electrostatic potential map of sodium stearate Most of the molecule is comprised of a nonpolar hydrocarbon chain (green) One end is very polar as indicated by the red and blue associated with the carboxylate and sodium ions respectively... [Pg.799]

In spite of being ionic many quaternary ammonium salts dissolve m nonpolar media The four alkyl groups attached to nitrogen shield its positive charge and impart lipophilic character to the tetraalkylammonium ion The following two quaternary ammonium salts for example are soluble m solvents of low polarity such as benzene decane and halo genated hydrocarbons... [Pg.923]

Hydrophilic (Section 19 5) Literally water loving a term applied to substances that are soluble in water usually be cause of their ability to form hydrogen bonds with water Hydrophobic (Section 19 5) Literally water hating a term applied to substances that are not soluble in water but are soluble in nonpolar hydrocarbon like media Hydroxylation (Section 15 5) Reaction or sequence of reac tions in which an alkene is converted to a vicinal diol Hyperconjugation (Section 4 10) Delocalization of a electrons... [Pg.1286]

All bonds between equal atoms are given zero values. Because of their symmetry, methane and ethane molecules are nonpolar. The principle of bond moments thus requires that the CH3 group moment equal one H—C moment. Hence the substitution of any aliphatic H by CH3 does not alter the dipole moment, and all saturated hydrocarbons have zero moments as long as the tetrahedral angles are maintained. [Pg.328]

In reverse-phase chromatography, which is the more commonly encountered form of HPLC, the stationary phase is nonpolar and the mobile phase is polar. The most common nonpolar stationary phases use an organochlorosilane for which the R group is an -octyl (Cg) or -octyldecyl (Cig) hydrocarbon chain. Most reverse-phase separations are carried out using a buffered aqueous solution as a polar mobile phase. Because the silica substrate is subject to hydrolysis in basic solutions, the pH of the mobile phase must be less than 7.5. [Pg.580]

Solution Properties. Typically, if a polymer is soluble ia a solvent, it is soluble ia all proportions. As solvent evaporates from the solution, no phase separation or precipitation occurs. The solution viscosity iacreases continually until a coherent film is formed. The film is held together by molecular entanglements and secondary bonding forces. The solubiUty of the acrylate polymers is affected by the nature of the side group. Polymers that contain short side chaias are relatively polar and are soluble ia polar solvents such as ketones, esters, or ether alcohols. As the side chaia iacreases ia length the polymers are less polar and dissolve ia relatively nonpolar solvents, such as aromatic or aUphatic hydrocarbons. [Pg.164]

Many simple systems that could be expected to form ideal Hquid mixtures are reasonably predicted by extending pure-species adsorption equiUbrium data to a multicomponent equation. The potential theory has been extended to binary mixtures of several hydrocarbons on activated carbon by assuming an ideal mixture (99) and to hydrocarbons on activated carbon and carbon molecular sieves, and to O2 and N2 on 5A and lOX zeoHtes (100). Mixture isotherms predicted by lAST agree with experimental data for methane + ethane and for ethylene + CO2 on activated carbon, and for CO + O2 and for propane + propylene on siUca gel (36). A statistical thermodynamic model has been successfully appHed to equiUbrium isotherms of several nonpolar species on 5A zeoHte, to predict multicomponent sorption equiUbria from the Henry constants for the pure components (26). A set of equations that incorporate surface heterogeneity into the lAST model provides a means for predicting multicomponent equiUbria, but the agreement is only good up to 50% surface saturation (9). [Pg.285]

The principal nonpolar-type adsorbent is activated carbon. Kquilihrium data have been reported on hydrocarbon systems, various organic compounds in water, and mixtures of organic compounds (11,15,16,46,47). With some exceptions, the least polar component of a mixture is selectively adsorbed eg, paraffins are adsorbed selectively relative to olefins of the same carbon number, but dicycUc aromatics are adsorbed selectively relative to monocyclic aromatics of the same carbon number (see Carbon, activated carbon). [Pg.292]

A number of chemical products are derived from Sasol s synthetic fuel operations based on the Fischer-Tropsch synthesis including paraffin waxes from the Arge process and several polar and nonpolar hydrocarbon mixtures from the Synthol process. Products suitable for use as hot melt adhesives, PVC lubricants, cormgated cardboard coating emulsions, and poHshes have been developed from Arge waxes. Wax blends containing medium and hard wax fractions are useful for making candles, and over 20,000 t/yr of wax are sold for this appHcation. [Pg.168]

The extremely nonpolar character of PFCs and very low forces of attraction between PFC molecules account for their special properties. Perfluorocarbons bod only slightly higher than noble gases of similar molecular weight, and their solvent properties are much more like those of argon and krypton than hydrocarbons (2). The physical properties of some PFCs are Hsted in Table 1. [Pg.282]

The sorption behavior of perfluorocarbon polymers is typical for nonpolar partially crystalline polymers (89). The weight gain strongly depends on the solubihty parameter. Litde sorption of substances such as hydrocarbons and polar compounds occurs. [Pg.352]

Dispersions. In phenoHc resin dispersions, the continuous phase is water or a nonpolar hydrocarbon solvent. The resin exists as droplets that have particle sizes of 1—20 p.m and are dispersed in the continuous phase. Aqueous dispersions are prepared either in situ during the preparation of the resin itself or by high shear mixing (25,35). [Pg.303]


See other pages where Hydrocarbons nonpolarity is mentioned: [Pg.203]    [Pg.8]    [Pg.218]    [Pg.504]    [Pg.310]    [Pg.32]    [Pg.203]    [Pg.8]    [Pg.218]    [Pg.504]    [Pg.310]    [Pg.32]    [Pg.135]    [Pg.376]    [Pg.467]    [Pg.2419]    [Pg.2609]    [Pg.128]    [Pg.23]    [Pg.127]    [Pg.799]    [Pg.800]    [Pg.128]    [Pg.262]    [Pg.147]    [Pg.271]    [Pg.51]    [Pg.297]    [Pg.171]    [Pg.312]    [Pg.361]    [Pg.73]    [Pg.34]    [Pg.196]    [Pg.372]    [Pg.166]   
See also in sourсe #XX -- [ Pg.39 ]




SEARCH



Nonpolar

Nonpolar hydrocarbon

Nonpolar hydrocarbon

Nonpolarized

Relative magnitude of nonpolar sugar-hydrocarbon interaction

© 2024 chempedia.info