Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbon radical cations electronic states

A general theory of the aromatic hydrocarbon radical cation and anion annihilation reactions has been forwarded by G. J. Hoytink 210> which in particular deals with a resonance or a non-resonance electron transfer mechanism leading to excited singlet or triplet states. The radical ion chemiluminescence reactions of naphthalene, anthracene, and tetracene are used as examples. [Pg.135]

Of course, a close stmctural relationship between radical cations and parent molecules is not likely to hold generally, but it is a fair approximation for alternant hydrocarbons. Deviations have been noted some stilbene radical cations have higher-lying excited states without precedent in the PE spectrum of the parent for radical cations of cross-conjugated systems (e.g., 1) already the first excited state is without such precedent. These states have been called non-Koop-manns states. Alkenes also feature major differences between parent and radical cation electronic structures. [Pg.215]

We will approach radical cation structures according to the nature of the parent molecules, specifically according to the donor type, viz., n-, or o-donors, to which they belong. Among the radical cations derived from rc-donors, those of aromatic hydrocarbons show the closest structural relationship to their parents. They also were the first class to be investigated in detail, because they are comparably stable and their spectra fall into a readily accessible range. This family shows the closest correlation between radical cation AEs, and parent AIs. On the other hand, cross-conjugated systems and alkenes may feature substantial differences between parent and radical cation electronic structures. Hence their tendency towards non-Koopmans type states. [Pg.190]

In complex organic molecules calculations of the geometry of excited states and hence predictions of chemiluminescent reactions are very difficult however, as is well known, in polycyclic aromatic hydrocarbons there are relatively small differences in the configurations of the ground state and the excited state. Moreover, the chemiluminescence produced by the reaction of aromatic hydrocarbon radical anions and radical cations is due to simple one-electron transfer reactions, especially in cases where both radical ions are derived from the same aromatic hydrocarbon, as in the reaction between 9.10-diphenyl anthracene radical cation and anion. More complex are radical ion chemiluminescence reactions involving radical ions of different parent compounds, such as the couple naphthalene radical anion/Wurster s blue (see Section VIII. B.). [Pg.69]

In contrast to liquid water, a detailed mechanistic understanding of the physical and chemical processes occurring in the evolution of the radiation chemical track in hydrocarbons is not available except on the most empirical level. Stochastic diffusion-kinetic calculations for low permittivity media have been limited to simple studies of cation-electron recombination in aliphatic hydrocarbons employing idealized track structures [56-58], and simplistic deterministic calculations have been used to model the radical and excited state chemistry [102]. While these calculations have been able to reproduce measured free ion yields and end product yields, respectively, the lack of a detailed mechanistic model makes it very difficult... [Pg.99]

Absorption due to main intermediates such as polymer cation radicals and excited states, electrons, and alkyl radicals of saturated hydrocarbon polymers had not been observed for a long time by pulse radiolysis [39]. In 1989, absorption due to the main intermediates was observed clearly in pulse radiolysis of saturated hydrocarbon polymer model compounds except for electrons [39,48]. In 1989, the broad absorption bands due to polymer excited states in the visible region and the tail parts of radical cation and electrons were observed in pulse radiolysis of ethylene-propylene copolymers and the decay of the polymer radical cations were clearly observed [49]. Recently, absorption band due to electrons in saturated hydrocarbon polymer model compounds was observed clearly by pulse radiolysis [49] as shown in Fig. 2. In addition, very broad absorption bands in the infrared region were observed clearly in the pulse radiolysis of ethylene-propylene copolymers [50] as shown in Fig. 3. Radiation protection effects [51] and detailed geminate ion recombination processes [52] of model compounds were studied by nano-, pico-, and subpicosecond pulse radiolyses. [Pg.556]

Photoinduced electron-transfer reaction of aromatic compounds with amines is one of the most fundamental reactions in the electron-donor-acceptor systems, which was recently reviewed by Lewis [35], Because of the low oxidation potentials of the amines, the photoinduced one-electron transfer from the amines to the excited singlet states of aromatic hydrocarbons ( Aril ) readily occurs to give the radical cations of amines and the radical anions of aromatic compounds even in the less polar solvents. [Pg.210]

The most common triplet state electron acceptors are ketones and quinones, whereas aromatic hydrocarbons, often bearing one or more cyano groups, are the most frequently used singlet state electron acceptors. For the generation of radical cations from a given donor it is important that the exothermidty of the electron transfer reaction can be adjusted to fall within an appropriate range, typically... [Pg.137]

Wilkinson and Schroeder (1979) have shown that the triplet states of aromatic hydrocarbons are quenched by quinones, the efficiency of quenching being related to the electron affinity of the quinone and the ionisation potential of the triplet hydrocarbon (Schroeder and Wilkinson, 1979). It was concluded that the quenching did not involve full electron transfer in nonpolar solvents. Photolysis experiments have shown that in propionitrile tetrachloro-benzo-l,4-quinone reacts with naphthalene to give radical ions (Gschwind and Haselbach, 1979). The naphthalene radical cation reacts with naphthalene to give a detectable intermediate. [Pg.90]

The vibronic coupling in the radical and radical cation of aromatic hydrocarbons is studied by photoionizing the corresponding anion and neutral molecules, respectively. The vibronic Hamiltonian of the final states of the ionized species is constructed in terms of the dimensionless normal coordinates of the electronic ground state of the corresponding (reference) anion or neutral species. The mass-weighted normal coordinates ) are obtained by diagonalizing the force field and are converted into the dimensionless form by [68]... [Pg.285]

Radical cations of saturated hydrocarbons have strong electronic absorptions in the visible and near-infrared region of the spectrum. The strongly colored nature of alkane radical cations is in striking contrast to neutral alkanes that absorb electronically only in the vacuum UV. The electronic absorption of alkane radical cations has been studied in the solid phase by matrix isolation using y-irradiation [1-3] and in the gas phase by ion cyclotron resonance (ICR) photodissociation in either the steady-state or pulsed mode of operation [4]. Both methods have their specific merits and drawbacks. A major concern in matrix isolation spectroscopy is spectral purity (because of the possible presence of other absorbing species) and... [Pg.108]


See other pages where Hydrocarbon radical cations electronic states is mentioned: [Pg.97]    [Pg.307]    [Pg.1048]    [Pg.502]    [Pg.609]    [Pg.70]    [Pg.120]    [Pg.211]    [Pg.213]    [Pg.262]    [Pg.287]    [Pg.322]    [Pg.72]    [Pg.169]    [Pg.274]    [Pg.53]    [Pg.176]    [Pg.548]    [Pg.83]    [Pg.40]    [Pg.181]    [Pg.599]    [Pg.52]    [Pg.23]    [Pg.744]    [Pg.745]    [Pg.804]    [Pg.891]    [Pg.29]    [Pg.43]    [Pg.211]    [Pg.278]    [Pg.306]    [Pg.216]    [Pg.214]    [Pg.193]    [Pg.45]    [Pg.327]    [Pg.1210]   
See also in sourсe #XX -- [ Pg.89 , Pg.90 , Pg.91 , Pg.92 ]




SEARCH



Cation states, radical

Cationic state

Electron radicals

Electron-cation

Hydrocarbons, cation radicals

Radical cations electronic states

© 2024 chempedia.info