Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrides peroxides

In other than elemental form, hydrogen is +1 and oxygen is -2. Unless they are elements on one side, they do not change. In more advanced courses you will have to be alert to the hydride, peroxide, and superoxide exceptions noted in the oxidation-number rules. [Pg.575]

All chemical blowing agents may be divided into the following groups carbonates and bicarbonates, nitrites, hydrides, peroxides, oxygen-containing acid derivatives, azo compounds, urea derivatives, hydrazines, semicarba-zides, azides, N-nitroso compounds, and triazols. [Pg.112]

Sodium boron hydride peroxide i lQiiinols from quinones > ... [Pg.361]

In addition to the hydrides of formula HjX, oxygen forms the hydride H2O2, hydrogen peroxide, and sulphur forms a whole series of hydrides called sulphanes. These are yellow liquids which are thermodynamically unstable with respect to hydrogen sulphide and sulphur. [Pg.269]

Ethyl ether Eiquid air, chlorine, chromium(VI) oxide, lithium aluminum hydride, ozone, perchloric acid, peroxides... [Pg.1208]

Glycerol Acetic anhydride, hypochlorites, chromium(VI) oxide, perchlorates, alkali peroxides, sodium hydride... [Pg.1208]

OrganometaUics and organometaHoids that yield peroxides in this manner include those in which Q is aluminum, antimony, arsenic, boron, cadmium, germanium, lead, phosphoms, siUcon, and tin and in which X is chlorine, bromine, alkoxy, acetoxy, cyano, oxide, hydride, hydroxyl, amino, alkyl, and boron tetrafluoride (28,33,44,60) (see Table 3). [Pg.110]

Diacyl peroxides have been reduced with a variety of reduciag agents, eg, lithium aluminum hydride, sulfides, phosphites, phosphines, and haUde ions (187). Hahdes yield carboxyUc acid salts (RO) gives acid anhydrides. With iodide ion and certain trivalent phosphoms compounds, the reductions are sufftcientiy quantitative for analytical purposes. [Pg.124]

The hydrides can also be used to form primary alcohols from either terminal or internal olefins. The olefin and hydride form an alkenyl zirconium, Cp2ZrRCl, which is oxidized to the alcohol. Protonic oxidizing agents such as peroxides and peracids form the alcohol direcdy, but dry oxygen may also be used to form the alkoxide which can be hydrolyzed (234). [Pg.439]

Borides are inert toward nonoxidizing acids however, a few, such as Be2B and MgB2, react with aqueous acids to form boron hydrides. Most borides dissolve in oxidizing acids such as nitric or hot sulfuric acid and they ate also readily attacked by hot alkaline salt melts or fused alkaU peroxides, forming the mote stable borates. In dry air, where a protective oxide film can be preserved, borides ate relatively resistant to oxidation. For example, the borides of vanadium, niobium, tantalum, molybdenum, and tungsten do not oxidize appreciably in air up to temperatures of 1000—1200°C. Zirconium and titanium borides ate fairly resistant up to 1400°C. Engineering and other properties of refractory metal borides have been summarized (1). [Pg.218]

Greater selectivity in purification can often be achieved by making use of differences in chemical properties between the substance to be purified and the contaminants. Unwanted metal ions may be removed by precipitation in the presence of a collector (see p. 54). Sodium borohydride and other metal hydrides transform organic peroxides and carbonyl-containing impurities such as aldehydes and ketones in alcohols and ethers. Many classes of organic chemicals can be purified by conversion into suitable derivatives, followed by regeneration. This chapter describes relevant procedures. [Pg.53]

The purification of diethyl ether (see Chapter 4) is typical of liquid ethers. The most common contaminants are the alcohols or hydroxy compounds from which the ethers are prepared, their oxidation products (e.g. aldehydes), peroxides and water. Peroxides, aldehydes and alcohols can be removed by shaking with alkaline potassium permanganate solution for several hours, followed by washing with water, concentrated sulfuric acid [CARE], then water. After drying with calcium chloride, the ether is distilled. It is then dried with sodium or with lithium aluminium hydride, redistilled and given a final fractional distillation. The drying process should be repeated if necessary. [Pg.65]

The dibutyl ether must be dry and peroxide-free. This can be achieved by filtering it through a large column of basic alumina, or by leaving overnight over sodium wire and distillation. If these precautions are not observed, low yields result. The checkers purified dibutyl ether by distillation from sodium hydride dispersion. [Pg.110]

Tetrahydrofuran may be purified by refluxing over solid potassium hydroxide, followed by distillation from lithium alu-miniun hydride. Tetrahydrofuran may be replaced by ethylene glycol dimethyl ether (dimethoxyethane). The submitter has indicated that either solvent may be freed conveniently from water, alcohols, and moderate amounts of peroxides by passing the commercial solvent through a column (2 in. diameter X 2-3 ft. length) of Linde Air Products Molecular Sieves (type 13A iQ- n. pellets), at a rate of approximately 100 ml. per minute. [Pg.32]

Hydrazoic acid Hydrides, volatile Hydrogen cyanide (unstabilized) Hydrogen (low pressure) Hydrogen peroxide (> 35% water) Magnesium peroxide Mercurous azide Methyl acetylene Methyl lactate Nickel hypophosphite Nitriles > ethyl Nitrogen bromide... [Pg.1027]

The stereochemical course of reduction of imonium salts by Grignard reagents was found to depend on the structure of the reagent 714). Hydro-boration of enamines and oxidation with hydrogen peroxide led to amino-alcohols (7/5). While aluminum hydrogen dichloride reacted with enamines to yield mostly saturated amines and some olefins on hydrolysis, aluminum hydride gave predominantly the unsaturated products 716). [Pg.433]

The heavier alkaline earth metals Ca, Sr, Ba (and Ra) react even more readily with non-metals, and again the direct formation of nitrides M3N2 is notable. Other products are similar though the hydrides are more stable (p. 65) and the carbides less stable than for Be and Mg. There is also a tendency, previously noted for the alkali metals (p. 84), to form peroxides MO2 of increasing stability in addition to the normal oxides MO. Calcium, Sr and Ba dissolve in liquid NH3 to give deep blue-black solutions from which lustrous, coppery, ammoniates M(NH3)g can be recovered on evaporation these ammoniates gradually decompose to the corresponding amides, especially in the presence of catalysts ... [Pg.113]

Consider the compounds strontium hydride, radium peroxide, and... [Pg.544]

Hydrogen cyanide reactions catalysts, 6,296 Hydrogen ligands, 2, 689-711 Hydrogenolysis platinum hydride complexes synthesis, 5, 359 Hydrogen peroxide catalytic oxidation, 6, 332, 334 hydrocarbon oxidation iron catalysts, 6, 379 reduction... [Pg.141]


See other pages where Hydrides peroxides is mentioned: [Pg.123]    [Pg.274]    [Pg.314]    [Pg.251]    [Pg.100]    [Pg.42]    [Pg.308]    [Pg.304]    [Pg.27]    [Pg.108]    [Pg.116]    [Pg.161]    [Pg.169]    [Pg.186]    [Pg.55]    [Pg.194]    [Pg.325]    [Pg.269]    [Pg.219]    [Pg.190]    [Pg.37]    [Pg.113]    [Pg.313]    [Pg.506]    [Pg.127]    [Pg.544]    [Pg.76]    [Pg.232]    [Pg.236]   
See also in sourсe #XX -- [ Pg.6 , Pg.299 ]




SEARCH



Hydrazine, Hydrogen Peroxide, and Related Hydrides

© 2024 chempedia.info