Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Terminal alkynes hydration

This reaction achieves an umpolung cyclization in vhich a terminal alkyne is hydrated and undergoes an intramolecular Michael addition according to the mechanism depicted in Scheme 6.34. [Pg.212]

Internal alkynes undergo hydration with concentrated acid, whereas terminal alkynes require the presence of an additional Hg " catalyst—usually HgS04—-to yield methyl ketones by Mar-kovnikov addition of HgO. [Pg.411]

The rates of bromination of internal alkynes are roughly 100 times greater that the corresponding terminal alkynes. For hydration, however, the rates are less than 10 times greater for the disubstituted compounds. Account for this difference by comparison of the mechanisms for bromination and hydration. [Pg.573]

Terminal alkyne anions are popular reagents for the acyl anion synthons (RCHjCO"). If this nucleophile is added to aldehydes or ketones, the triple bond remains. This can be con verted to an alkynemercury(II) complex with mercuric salts and is hydrated with water or acids to form ketones (M.M.T. Khan, 1974). The more substituted carbon atom of the al-kynes is converted preferentially into a carbonyl group. Highly substituted a-hydroxyketones are available by this method (J.A. Katzenellenbogen, 1973). Acetylene itself can react with two molecules of an aldehyde or a ketone (V. jager, 1977). Hydration then leads to 1,4-dihydroxy-2-butanones. The 1,4-diols tend to condense to tetrahydrofuran derivatives in the presence of acids. [Pg.52]

There also exists an acidregioselective condensation of the aldol type, namely the Mannich reaction (B. Reichert, 1959 H. Hellmann, 1960 see also p. 291f.). The condensation of secondary amines with aldehydes yields Immonium salts, which react with ketones to give 3-amino ketones (=Mannich bases). Ketones with two enolizable CHj-groupings may form 1,5-diamino-3-pentanones, but monosubstitution products can always be obtained in high yield. Unsymmetrical ketones react preferentially at the most highly substituted carbon atom. Sterical hindrance can reverse this regioselectivity. Thermal elimination of amines leads to the a,)3-unsaturated ketone. Another efficient pathway to vinyl ketones starts with the addition of terminal alkynes to immonium salts. On mercury(ll) catalyzed hydration the product is converted to the Mannich base (H. Smith, 1964). [Pg.57]

Hydration of alkynes follows Markovmkov s rule terminal alkynes yield methyl substituted ketones... [Pg.380]

A mixture of both possible ketones results when an unsymmetrically substituted internal alkyne (RC=CR ) is hydrated. The reaction is therefore most useful when applied to a terminal alkyne (RC=CH) because only a methyl ketone is formed. [Pg.266]

The hydroboration/oxidation sequence is complementary to the direct, mercury(ll)-catalyzed hydration reaction of a terminal alkyne because different products result. Direct hydration with aqueous acid and mercury(IJ) sulfate leads to a methyl ketone, whereas hydroboration/oxidation of the same terminal alkyne leads to an aldehyde. [Pg.267]

The chemistry of alkynes is dominated by electrophilic addition reactions, similar to those of alkenes. Alkynes react with HBr and HC1 to yield vinylic halides and with Br2 and Cl2 to yield 1,2-dihalides (vicinal dihalides). Alkynes can be hydrated by reaction with aqueous sulfuric acid in the presence of mercury(ll) catalyst. The reaction leads to an intermediate enol that immediately isomerizes to yield a ketone tautomer. Since the addition reaction occurs with Markovnikov regiochemistry, a methyl ketone is produced from a terminal alkyne. Alternatively, hydroboration/oxidation of a terminal alkyne yields an aldehyde. [Pg.279]

The hydration of triple bonds is generally carried out with mercuric ion salts (often the sulfate or acetate) as catalysts. Mercuric oxide in the presence of an acid is also a common reagent. Since the addition follows Markovnikov s rule, only acetylene gives an aldehyde. All other triple-bond compounds give ketones (for a method of reversing the orientation for terminal alkynes, see 15-16). With allqmes of the form RC=CH methyl ketones are formed almost exclusively, but with RC=CR both possible products are usually obtained. The reaction can be conveniently carried out with a catalyst prepared by impregnating mercuric oxide onto Nafion-H (a superacidic perfluorinated resinsulfonic acid). ... [Pg.995]

On the basis of these results and Damiano s report [28], Darcel et al. described an iron-catalyzed hydration of terminal alkynes using catalytic amounts of iron(III) chloride (10 mol%). The reaction selectively leads to the corresponding methyl ketone derivatives (Scheme 11) [29]. Iron(II) species such as FeCl2 or Fe(OAc)2 were not able to promote the reaction, the starting phenylacetylene remained unchanged after several days at 75°C. [Pg.9]

Scheme 11 Iron chloride-catalyzed hydration of terminal alkynes... Scheme 11 Iron chloride-catalyzed hydration of terminal alkynes...
Experiments with terminal acetylenes, isolation of an intermediate acetal, alkyne hydratation studies, and ab initio calculations provide substantiation of a unified mechanism that rationalizes the reactions in which the complex formation between the alkyne and the iron(III) halides is the activating step (Scheme 12) [27]. [Pg.9]

Hydration of unactivated alkynes is an important method for functionalizing this plentiful hydrocarbon source. Therefore, a variety of metal ions have been proposed as catalysts for this reaction, and almost all of the reported additions of water to terminal alkynes follow the Markonikov rule. The hydration of l-aUcynes with Hg(II) salts in sulfuric acid [85], RuCh/aq.HCl [86, 87], K[Ru (edta-H)Cl] 2H20 [88], RhCl,.3H20/aq. HCl [89], RhCl3/NR4 [90], Zeise-type Pt(II) complexes [91-93], and NaAuCl4 [94] produced exclusively methyl ketones (Eq. 6.46). [Pg.199]

The most synthetically valuable method for converting alkynes to ketones is by mercuric ion-catalyzed hydration. Terminal alkynes give methyl ketones, in accordance with the Markovnikov rule. Internal alkynes give mixtures of ketones unless some structural feature promotes regioselectivity. Reactions with Hg(OAc)2 in other nucleophilic solvents such as acetic acid or methanol proceed to (3-acetoxy- or (3-methoxyalkenylmercury intermediates,152 which can be reduced or solvolyzed to ketones. The regiochemistry is indicative of a mercurinium ion intermediate that is opened by nucleophilic attack at the more positive carbon, that is, the additions follow the Markovnikov rule. Scheme 4.8 gives some examples of alkyne hydration reactions. [Pg.335]

Pt-catalyzed hydration of various aliphatic and aromatic alkynes under phase transfer conditions in (CH2C1)2/H20 in the presence of Aliquat 336 led to either a Markovnikov product, mixtures of two ketones, or ketones with the carbonyl group positioned away from the bulky side.72 In the absence of the phase transfer reagent, Aliquat 336, hardly any reaction took place. Recently, a hydrophobic, low-loading and alkylated polystyrene-supported sulfonic acid (LL-ALPS-SO3H) has also been developed for the hydration of terminal alkynes in pure water, leading to ketones as the product.73 Under microwave irradiation, the hydration of terminal arylalkynes was reported to proceed in superheated water (200°C) without any catalysts.74... [Pg.119]

Table 1 Selected results on catalytic hydration of terminal alkynes RCCH.a... Table 1 Selected results on catalytic hydration of terminal alkynes RCCH.a...
Since Bruce s pioneering work in the area of ruthenium vinylidene chemistry (1), it has been well known that isomerization of a terminal alkyne to a vinylidene on a metal center is not only favorable but also effects a reversal in the reactivity of the carbon atoms. However, hydration catalysis was not possible, because alkyl migration from a proposed acyl intermediate led to an... [Pg.237]

In an effort to apply the cooperative principles of metalloenzyme reactivity, involving a combination of metal-ligand and hydrogen bonding, we have reported a ruthenium catalyst incorporating imidazolyl phosphine ligands that efficiently and selectively hydrates terminal alkynes (5). We subsequently found that application of pyridyl phosphines to the reaction resulted in a >10-fold rate enhancement and complete anti-Markovnikov selectivity, even in the... [Pg.237]

Similarly, Vasudevan and Verzal have found that terminal alkynes can be hydrated under neutral, metal-free conditions using water as solvent (Scheme 4.15) [41], While this reaction typically requires a catalyst such as gold(III) bromide, employing microwave-superheated distilled water allowed this chemistry to proceed without any catalyst. Extension of this methodology led to a one-pot conversion of alkynes to imines (hydroamination). [Pg.68]

Scheme 4.15 Hydration of terminal alkynes in superheated water. Scheme 4.15 Hydration of terminal alkynes in superheated water.
A most significant advance in the alkyne hydration area during the past decade has been the development of Ru(n) catalyst systems that have enabled the anti-Markovnikov hydration of terminal alkynes (entries 6 and 7). These reactions involve the addition of water to the a-carbon of a ruthenium vinylidene complex, followed by reductive elimination of the resulting hydridoruthenium acyl intermediate (path C).392-395 While the use of GpRuGl(dppm) in aqueous dioxane (entry 6)393-396 and an indenylruthenium catalyst in an aqueous medium including surfactants has proved to be effective (entry 7),397 an Ru(n)/P,N-ligand system (entry 8) has recently been reported that displays enzyme-like rate acceleration (>2.4 x 1011) (dppm = bis(diphenylphosphino)methane).398... [Pg.679]

Acyl complexes can also result from the reaction of terminal alkynes with cationic, hydrated complexes of iron (Entry 4, Table 2.7) [47]. An electrophilic vinylidene complex is probably formed as intermediate this then reacts with water and tautomerizes to the acyl complex. [Pg.20]

By the example of 34 different alkynes, it was convincingly demonstrated that the product of the treatment of [PtCLJ with CO at 40-110 °C is a very powerful alkyne hydration catalyst some of the reactions are shown on Scheme 9.7 [25], The best medium for this transformation is THF containing 5 % H2O. The reaction can also be performed in a water-organic solvent two-phase system (e.g. with 1,2-dichloroethane), however in this case addition of a tetralkylammonium salt, such as Aliquat 336, is required to facilitate mass transfer between the phases. After the reaction with CO, the major part of platinum is present as H2[ Pt3(CO)6 n], but the catalytic effect was assigned to a putative mononuclear Pt-hydride, [PtHCl(CO)2], presumably formed from the cluster and some HCl (supplied by the reduction of [PtCU]). The hydration of terminal acetylenes follows Markovnikov s mle leading exclusively to aldehyde-free ketones. [Pg.224]

It is noteworthy that the indenyl complex RuCl(ri -C9H7)(PPh3)2l4 provides an efficient catalyst precursor for the anti-Markovnikov hydration of terminal alkynes in aqueous media, especially in micellar solutions with either anionic (sodium dode-cylsulfate (SDS)) or cationic (hexadecyltrimethylammonium bromide (CTAB)) surfactants [38]. This system can be applied to the hydration of propargylic alcohols to selectively produce P-hydroxyaldehydes, whereas RuCl(Cp)(PMe3)2 gives a,P-unsat-urated aldehydes (the Meyer Schuster rearrangement products)(Scheme 10.8) [39]. [Pg.319]

The impressive activity achieved by Teles catalyst was improved some years later by the use of CO as an additive [92]. In this study, Hayashi and Tanaka reported a TOF of 15600h 1, at least two orders of magnitude higher than [as-PtCl2(tppts)2], for the hydration of alkynes, providing an alternative synthetic route to the Wacker oxidation. Although several solvents were tested, the best results were obtained with aqueous methanol, and sulfuric acid or HTfO as acidic promoters. Unlike Utimoto s observation, in this case terminal propargylic alcohols partially (17-20%) delivered anti-Markovnikov product, in addition to the Markovnikov species. Some years before, Wakatsuki et al. had already reported the anti-Markovnikov hydration of terminal alkynes catalyzed by ruthenium(II) [93]. [Pg.450]

An anti-Markovnikov hydration of terminal alkynes could be a convenient way of preparing aldehydes, but so far only a few ruthenium-complexes have been identified that catalyze this unusual hydration mode ]16]. The presence of bidentate phosphine ligands ]16b], the coordination of a water molecule stabilized by hydrogen bonding ]16e] and the use of phosphinopyridine ligands ]16f] seem to be of major importance in these processes. [Pg.39]

Table 2.7 Regioselective hydration of functionalized terminal alkynes with 13e as a catalyst. Table 2.7 Regioselective hydration of functionalized terminal alkynes with 13e as a catalyst.
Chevalher, F. and Breit, B. (2006) Self-assembled bidentate ligands for Ru-catalyzed anti-Markovnikov hydration of terminal alkynes. Angew. Chem., 118, 1629—1632 (2006) Selfassembled bidentate ligands for Ru-catalyzed anti-Markovnikov hydration of terminal alkynes. Angew. Chem., Int. Ed., 45, 1599-1602. [Pg.54]

Both acid and metal catalysis are usually required to accomplish hydration of alkynes to yield carbonyl compounds.34 The addition is usually regioselective, allowing for conversion of terminal alkynes to ketones. Hydration of acetylene to produce acetaldehyde used to be an industrially significant process but was replaced by the Wacker synthesis. [Pg.287]

Other cations (Cu2+, Pd2+, Ru3+, Ni2+, Rh3+) incorporated into Nafion-H have been found to promote hydration.36 Other metals that catalyze hydration of alkynes include gold(III),37 ruthenium(in),38 and platinum(II) (Zeise s salt39 40 and halides40), p-Methoxybenzenetellurinic acid is very effective in the hydration of terminal alkynes 41 Similar to the hydration of alkenes, photochemical acid-catalyzed hydration of alkynes is possible ... [Pg.287]


See other pages where Terminal alkynes hydration is mentioned: [Pg.47]    [Pg.229]    [Pg.230]    [Pg.233]    [Pg.237]    [Pg.238]    [Pg.514]    [Pg.441]    [Pg.43]    [Pg.45]    [Pg.54]    [Pg.54]    [Pg.232]    [Pg.385]   
See also in sourсe #XX -- [ Pg.9 , Pg.12 ]




SEARCH



Alkynes hydration

Terminal alkynes

© 2024 chempedia.info