Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reagents annulation

Methyl ketones are important intermediates for the synthesis of methyl alkyl carbinols, annulation reagents, and cyclic compounds. A common synthetic method for the preparation of methyl ketones is the alkylation of acetone derivatives, but the method suffers limitations such as low yields and lack of regioselectivity. Preparation of methyl ketones from olefins and acetylenes using mercury compounds is a better method. For example, hydration of terminal acetylenes using HgSO gives methyl ketones cleanly. Oxymercuration of 1-olefins and subsequent oxidation with chromic oxide is... [Pg.11]

Seven procedures descnbe preparation of important synthesis intermediates A two-step procedure gives 2-(HYDROXYMETHYL)ALLYLTRIMETH-YLSILANE, a versatile bifunctional reagent As the acetate, it can be converted to a tnmethylenemethane-palladium complex (in situ) which undergoes [3 -(- 2] annulation reactions with electron-deficient alkenes A preparation of halide-free METHYLLITHIUM is included because the presence of lithium halide in the reagent sometimes complicates the analysis and use of methyllithium Commercial samples invariably contain a full molar equivalent of bromide or iodide AZLLENE IS a fundamental compound in organic chemistry, the preparation... [Pg.224]

In addition to the synthesis of heterocycles, the Corey-Chaykovsky reaction bestows an entry to carbocycles as well. The reaction of (trialkylsilyl)vinylketene 89 with substituted ylide 90 led exclusively to rrans-4,5-dimethyl cyclopentenone 91. The substituted ylide 90 here serves as a nucleophilic carbenoid reagent in the formal [4 +1] annulation reaction. [Pg.12]

Tlie constrLiction of carbocydic cotnpoutidi by ring-annulation procedures frequently plays a prominent role in total syntliesis. Tlie tolerance of various functional groups in tlie zinc reagents employed in copper-catalyzed asymmetric 1,4-additions fornis tlie basis for tliree novd catalytic enantioselective annulation metliods discussed bete. [Pg.252]

It will be recalled that lactone-derived enol triflate 102 was expected to serve as a substrate for a Murai coupling37 with the mixed cuprate reagent derived from iodo ortho ester 103 (see Scheme 17c). If successful, this C-C bond forming process would accomplish the introduction of the remaining carbon atoms needed for the annulation of the seven-membered D-ring lactone. [Pg.773]

Aldol addition and related reactions of enolates and enolate equivalents are the subject of the first part of Chapter 2. These reactions provide powerful methods for controlling the stereochemistry in reactions that form hydroxyl- and methyl-substituted structures, such as those found in many antibiotics. We will see how the choice of the nucleophile, the other reagents (such as Lewis acids), and adjustment of reaction conditions can be used to control stereochemistry. We discuss the role of open, cyclic, and chelated transition structures in determining stereochemistry, and will also see how chiral auxiliaries and chiral catalysts can control the enantiose-lectivity of these reactions. Intramolecular aldol reactions, including the Robinson annulation are discussed. Other reactions included in Chapter 2 include Mannich, carbon acylation, and olefination reactions. The reactivity of other carbon nucleophiles including phosphonium ylides, phosphonate carbanions, sulfone anions, sulfonium ylides, and sulfoxonium ylides are also considered. [Pg.1334]

Extension to carbocyclization of butadiene telomerization using nitromethane as a trapping reagent is reported (Eq. 5.48).72 Palladium-catalyzed carbo-annulation of 1,3-dienes by aryl halides is also reported (Eq. 5.49).73 The nitro group is removed by radical denitration (see Section 7.2), or the nitroalkyl group is transformed into the carbonyl group via the Nef reaction (see Section 6.1). [Pg.139]

The final procedure in the volume documents a convenient synthesis of the classical annulating reagent ETHYL 3-OXO-4-PENTENOATE (NAZAROV S REAGENT). [Pg.132]

Feringa and co-workers described the tandem addition-aldol cyclization protocol leading to the formation of 6,6-, 6,7-, and 6,8-annulated bicyclic systems (Scheme 68).39 Using Cu(n)-29 as catalyst and functionalized organozinc reagents as nucleophiles, the conjugate addition reaction followed by aldol cyclization can offer highly enantioselec-tive annulation products (up to 98% ee). This method can be used in the synthesis of carbocyclic compounds, such as steroids, terpenes, and other natural products. [Pg.397]

This sequence initiated by the nucleophilic cyclopropyl conjunctive reagent 9 allows facile annulation concommitant with regiocontrolled further structural elaboration as outlined in Eq. 8429). With the electrophilic conjunctive cyclopropyl reagent 58, this [3 + 2] annulation onto a vinyl organometallic (Eq. 85) has the availability of the... [Pg.54]

Catalytic asymmetric methylation of 6,7-dichloro-5-methoxy-2-phenyl-l-indanone with methyl chloride in 50% sodium hydroxide/toluene using M-(p-trifluoro-methylbenzyDcinchoninium bromide as chiral phase transfer catalyst produces (S)-(+)-6,7-dichloro-5-methoxy-2-methyl-2--phenyl-l-indanone in 94% ee and 95% yield. Under similar conditions, via an asymmetric modification of the Robinson annulation enqploying 1,3-dichloro-2-butene (Wichterle reagent) as a methyl vinyl ketone surrogate, 6,7 dichloro-5-methoxy 2-propyl-l-indanone is alkylated to (S)-(+)-6,7-dichloro-2-(3-chloro-2-butenyl)-2,3 dihydroxy-5-methoxy-2-propyl-l-inden-l-one in 92% ee and 99% yield. Kinetic and mechanistic studies provide evidence for an intermediate dimeric catalyst species and subsequent formation of a tight ion pair between catalyst and substrate. [Pg.67]

Figure 14. Reaction scheme for the chiral Robinson annulation using the Wichterle reagent. Figure 14. Reaction scheme for the chiral Robinson annulation using the Wichterle reagent.
The total synthesis of the furo[3,2-a]carbazole alkaloid furostifoline is achieved in a highly convergent manner by successive formation of the car-bazole nucleus and annulation of the furan ring (Scheme 15). Electrophilic substitution of the arylamine 30 using the complex salt 6a provides complex 31. In this case, iodine in pyridine was the superior reagent for the oxidative cyclization to the carbazole 32. Finally, annulation of the furan ring by an Amberlyst 15-catalyzed cyclization affords furostifoline 33 [97]. [Pg.127]

In the first method, a dialkylzinc reagent bearing an acetal moiety at the d-posi-tion is used (Scheme 7.25(b)). The catalytic 1,4-addition is followed by acetal hydrolysis and aldol cyclization of the 4-substituted cycloalkanone, affording 6,6- (92), 6,7-, (93) and 6,8- (94) annulated ring systems with high enantioselectivities (>96% ees) [80]. In addition, dimethyl-substituted decalone 95, with a structure frequently found in natural products, is readily obtained in enantiomerically pure form. [Pg.252]

Scheme 7.25. Annulation methodology a) Hajosh-Parrish version of the Robinson annulation, b) catalytic enantioselective annulation with functionalised organozinc reagents. Scheme 7.25. Annulation methodology a) Hajosh-Parrish version of the Robinson annulation, b) catalytic enantioselective annulation with functionalised organozinc reagents.
Lactone 17 was converted to the trans fused octalone 18 by a classical Grignard-type carboannulation. Variations of the organometallic reagent used in the conversion of 17 to 18 and modifications of the substrate and alkylation reagent utilized to produce 15 afford unusually flexible options for the preparation of annulated cyclohexanes. [Pg.3]

The reaction of (trialkylsilyl)vinylketenes with nucleophilic carbenoid reagents, such as sulfur ylides and diazo compounds, has been used for synthesis of substituted cyclopentenones by stereoselective 4 + 1-annulation (Scheme 12). The strategy relies on the remarkable ability of silyl substituents to stabilize ketenes and suppress their tendency to undergo dimerization and 2 - - 2-cycloaddition. [Pg.381]

Annulation of aryl halides with ortho side chains bearing a pendant electi ophilic moiety via treatment with an organolithium reagent, involving halogen-metal exchange and subsequent nucleophilic cyclization to form 4- to 7-membered rings. [Pg.442]


See other pages where Reagents annulation is mentioned: [Pg.5597]    [Pg.5597]    [Pg.303]    [Pg.57]    [Pg.171]    [Pg.253]    [Pg.760]    [Pg.127]    [Pg.192]    [Pg.136]    [Pg.276]    [Pg.476]    [Pg.75]    [Pg.422]    [Pg.14]    [Pg.6]    [Pg.9]    [Pg.9]    [Pg.43]    [Pg.53]    [Pg.55]    [Pg.70]    [Pg.288]    [Pg.172]    [Pg.43]    [Pg.350]    [Pg.79]    [Pg.102]    [Pg.171]    [Pg.253]    [Pg.5]    [Pg.103]   
See also in sourсe #XX -- [ Pg.435 , Pg.439 ]




SEARCH



© 2024 chempedia.info