Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

HPLC instrumentation Instrumental bandwidth

An overview of HPLC instrumentation, operating principles, and recent advances or trends that are pertinent to pharmaceutical analysis is provided in Chapter 3 for the novice and the more experienced analyst. Modern liquid chromatographs have excellent performance and reliability because of the decades of refinements driven by technical advances and competition between manufacturers in a two billion-dollar-plus equipment market. References to HPLC textbooks, reference books, review articles, and training software have been provided in this chapter. Rather than summarizing the current literature, the goal is to provide the reader with a concise overview of HPLC instrumentation, operating principles, and recent advances or trends that lead to better analytical performance. Two often-neglected system parameters—dwell volume and instrumental bandwidth—are discussed in more detail because of their impact on fast LC and small-bore LC applications. [Pg.3]

FIGURE 16 The chromatogram of an injection of a caffeine solution without the column showing the instrumental bandwidth of a Waters Alliance HPLC system with a 966 PDA detector with a standard flow cell. [Pg.71]

This chapter provides an overview of modern HPLC equipment, including the operating principles and trends of pumps, injectors, detectors, data systems, and specialized applications systems. System dwell volume and instrumental bandwidth are discussed, with their impacts on shorter and smaller diameter column applications. The most important performance characteristics are flow precision and compositional accuracy for the pump, sampling precision and carryover for the autosampler, and sensitivity for the detector. Manufacturers and selection criteria for HPLC equipment are reviewed. [Pg.109]

Low-dispersion HPLC systems are necessitated by the increasing trend of using shorter and narrower HPLC columns, which are more susceptible to the deleterious effects of extra-column band-broadening. HPLC manufacturers are designing newer analytical HPLC systems with improved instrumental bandwidths compatible with 2-mm i.d. columns by using micro injectors, smaller i.d. connection tubing, and detector flow cells. A new generation of ultra-low dispersion systems dedicated for micro and nano LC is also available. [Pg.268]

Capillary zone electrophoresis (CZE) is a powerful technique, magnetic in its analytical personality as a result of the simple way diverse analytes can be resolved rapidly and with high efficiency. The attraction is easy to understand—an electrophoretic technique with as much bandwidth as (and complementary to) HPLC and multiple modes of separation available by simply changing the buffer system. Yet within the simple instrumental framework that is, at its root, a power supply, a capillary and a detector, lies the capability to analyze drugs, peptides, carbohydrates, and proteins in sample matrices as simple as buffer or as complex as semm. That power is the magnet that draws people in. [Pg.43]


See other pages where HPLC instrumentation Instrumental bandwidth is mentioned: [Pg.259]    [Pg.509]    [Pg.48]    [Pg.300]    [Pg.79]    [Pg.104]    [Pg.64]    [Pg.3469]    [Pg.350]   


SEARCH



Bandwidth

HPLC instrumentation

© 2024 chempedia.info