Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High pressure carbon oxide

Eq. 4.54 shows the reaction of n-heptanol (151) with Pb(OAc)4 under high-pressured carbon monoxide with an autoclave to generate the corresponding 8-lactone (152). This reaction proceeds through the formation of an oxygen-centered radical by the reaction of alcohol (151) with Pb(OAc)4,1,5-H shift, reaction with carbon monoxide to form an acyl radical, oxidation of the acyl radical with Pb(OAc)4, and finally, polar cyclization to provide 8-lactone [142-146]. This reaction can be used for primary and secondary alcohols, while (3-cleavage reaction of the formed alkoxyl radicals derived from tertiary alcohols occurs. [Pg.149]

Acronyms and variables cold crystalhzation (CC) cobalt molybdenum catalyst (CoMoCAT) chemical vapor deposition (CVD) dichlorobenzene (DCB) high-pressure carbon monoxide (HiPCO) isotactic polypropylene (iPP) melt crystalhzation (MC) melt flow index (MFl) poly( -caprolactone) (PCL) polydispersity index (PDD polyethylene (PE) polyethylene oxide (PEO) poly (ethylene-propylene-diene) [P(E-PP-diene)] poly(ethylene 2,6-naphthalate) (PEN) poly(ethylene terephthalate (PET) poly(L-lactic acid) (PLLA) poly(trimethylene terephthalate (PTMT) poly(vinyl alcohol) (PVA) 1,1,2,2-tetrachloroethane (TCE) tetrahydrofuran (THE) weight-average molecular weight = ] number-average molecular weight Avrami exponent for neat polymer = Avrami exponent for CNT composite = Avrami rate constant for neat polymer = Avrami exponent for composite = neat polymer crystalhzation... [Pg.159]

At still higher temperatures, when sufficient oxygen is present, combustion and "hot" flames are observed the principal products are carbon oxides and water. Key variables that determine the reaction characteristics are fuel-to-oxidant ratio, pressure, reactor configuration and residence time, and the nature of the surface exposed to the reaction 2one. The chemistry of hot flames, which occur in the high temperature region, has been extensively discussed (60-62) (see Col ustion science and technology). [Pg.338]

Because the synthesis reactions are exothermic with a net decrease in molar volume, equiUbrium conversions of the carbon oxides to methanol by reactions 1 and 2 are favored by high pressure and low temperature, as shown for the indicated reformed natural gas composition in Figure 1. The mechanism of methanol synthesis on the copper—zinc—alumina catalyst was elucidated as recentiy as 1990 (7). For a pure H2—CO mixture, carbon monoxide is adsorbed on the copper surface where it is hydrogenated to methanol. When CO2 is added to the reacting mixture, the copper surface becomes partially covered by adsorbed oxygen by the reaction C02 CO + O (ads). This results in a change in mechanism where CO reacts with the adsorbed oxygen to form CO2, which becomes the primary source of carbon for methanol. [Pg.275]

Cyclohexylamine is miscible with water, with which it forms an azeotrope (55.8% H2O) at 96.4°C, making it especially suitable for low pressure steam systems in which it acts as a protective film-former in addition to being a neutralizing amine. Nearly two-thirds of 1989 U.S. production of 5000 —6000 t/yr cyclohexylamine serviced this appHcation (69). Carbon dioxide corrosion is inhibited by deposition of nonwettable film on metal (70). In high pressure systems CHA is chemically more stable than morpholine [110-91-8] (71). A primary amine, CHA does not directiy generate nitrosamine upon nitrite exposure as does morpholine. CHA is used for corrosion inhibitor radiator alcohol solutions, also in paper- and metal-coating industries for moisture and oxidation protection. [Pg.212]

Sodium is commonly shipped in 36- to 70-t tank cars in the United States. Smaller amounts are shipped in 16-t tank tmcks or ISO-tanks. Sodium is also available in 104- and 190-kg dmms, and in bricks (0.5—5 kg). A thin layer of oxide, hydroxide, or carbonate is usually present. Sodium is also marketed in small lots as a dispersion in an inert hydrocarbon, or produced in-process via high pressure injection into a pumped stream of inert carrier fluid, such as toluene or mineral oil. [Pg.168]

The carbon monoxide purity from the Cosorb process is very high because physically absorbed gases are removed from the solution prior to the low pressure stripping column. Furthermore, there is no potential for oxidation of absorbed carbon monoxide as ia the copper—Hquor process. These two factors lead to the production of very high purity carbon monoxide, 99+ %. Feed impurities exit with the hydrogen-rich tail gas therefore, the purity of this coproduct hydrogen stream depends on the impurity level ia the feed gas. [Pg.58]

Methanol Synthesis. Methanol has been manufactured on an industrial scale by the cataly2ed reaction of carbon monoxide and hydrogen since 1924. The high pressure processes, which utili2e 2inc oxide—chromium oxide catalysts, are operated above 20 MPa (200 atm) and temperatures of 300—400°C. The catalyst contains approximately 72 wt % 2inc oxide, 22 wt % chromium (II) oxide, 1 wt % carbon, and 0.1 wt % chromium (VI) the balance is materials lost on heating. [Pg.199]

Low Oxidation State Chromium Compounds. Cr(0) compounds are TT-bonded complexes that require electron-rich donor species such as CO and C H to stabilize the low oxidation state. A direct synthesis of Cr(CO)g, from the metal and CO, is not possible. Normally, the preparation requires an anhydrous Cr(III) salt, a reducing agent, an arene compound, carbon monoxide that may or may not be under high pressure, and an inert atmosphere (see Carbonyls). [Pg.134]


See other pages where High pressure carbon oxide is mentioned: [Pg.19]    [Pg.271]    [Pg.19]    [Pg.271]    [Pg.43]    [Pg.69]    [Pg.441]    [Pg.1960]    [Pg.10]    [Pg.1959]    [Pg.8]    [Pg.168]    [Pg.177]    [Pg.356]    [Pg.165]    [Pg.441]    [Pg.756]    [Pg.652]    [Pg.87]    [Pg.1960]    [Pg.91]    [Pg.207]    [Pg.67]    [Pg.446]    [Pg.35]    [Pg.172]    [Pg.365]    [Pg.15]    [Pg.422]    [Pg.440]    [Pg.154]    [Pg.218]    [Pg.363]    [Pg.225]    [Pg.419]    [Pg.89]    [Pg.516]    [Pg.558]    [Pg.235]    [Pg.175]    [Pg.459]   


SEARCH



High oxidation

High pressure oxidation

High-pressure carbon oxide process

Oxidation Pressure

© 2024 chempedia.info