Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterogeneous catalysts features

This complex and structurally related molecules served as a functional homogeneous model system for commercially used heterogeneous catalysts based on chromium (e.g. Cp2Cr on silica - Union Carbide catalyst). The kinetics of the polymerization have been studied to elucidate mechanistic features of the catalysis and in order to characterize the potential energy surface of the catalytic reaction. [Pg.153]

The potential importance of homogeneous catalytic reactions in synthesis gas transformations (i.e., hydrogenation of carbon monoxide) has been widely recognized in recent years. In the first place, such systems could provide structural and mechanistic models for the currently more important, but more difficult to study, heterogeneous catalysts. Secondly, product selectivity is generally more readily achievable with homogeneous catalysts, and this would be an obviously desirable feature in an efficient process converting synthesis gas to useful chemicals and fuels. [Pg.251]

Various works has pointed out the role of the nanostructure of the catalysts in their design.18-26 There is a general agreement that the nanostructure of the oxide particles is a key to control the reactivity and selectivity. Several papers have discussed the features and properties of nanostructured catalysts and oxides,27-41 but often the concept of nanostructure is not clearly defined. A heterogeneous catalyst should be optimized on a multiscale level, e.g. from the molecular level to the nano, micro- and meso-scale level.42 Therefore, not only the active site itself (molecular level) is relevant, but also the environment around the active site which orients or assist the coordination of the reactants, may induce sterical constrains on the transition state, and affect the short-range transport effects (nano-scale level).42 The catalytic surface process is in series with the transport of the reactants and the back-diffusion of the products which should be concerted with the catalytic transformation. Heat... [Pg.365]

Pores are found in many solids and the term porosity is often used quite arbitrarily to describe many different properties of such materials. Occasionally, it is used to indicate the mere presence of pores in a material, sometimes as a measure for the size of the pores, and often as a measure for the amount of pores present in a material. The latter is closest to its physical definition. The porosity of a material is defined as the ratio between the pore volume of a particle and its total volume (pore volume + volume of solid) [1]. A certain porosity is a common feature of most heterogeneous catalysts. The pores are either formed by voids between small aggregated particles (textural porosity) or they are intrinsic structural features of the materials (structural porosity). According to the IUPAC notation, porous materials are classified with respect to their sizes into three groups microporous, mesoporous, and macroporous materials [2], Microporous materials have pores with diameters < 2 nm, mesoporous materials have pore diameters between 2 and 50 nm, and macroporous materials have pore diameters > 50 nm. Nowadays, some authors use the term nanoporosity which, however, has no clear definition but is typically used in combination with nanotechnology and nanochemistry for materials with pore sizes in the nanometer range, i.e., 0.1 to 100 nm. Nanoporous could thus mean everything from microporous to macroporous. [Pg.96]

The atomic structure of a heterogeneous catalyst determines its chemical and phase properties, but texture determines a wide range of additional features that dictate such characteristics as adsorption and capillarity, permeability, mechanical strength, heat and electrical conductivity, etc. For example, the apparent catalytic activity,. of a grain, taking into account diffusion of reagents, depends on the interrelation between the rates of reaction and diffusion, and the latter is determined by a porous structure. [Pg.260]

Colloidal nanoparticles can be employed as heterogeneous catalyst precursors in the same fashion as molecular clusters. In many respects, colloidal nanoparticles offer opportunities to combine the best features of the traditional and cluster catalyst preparation routes to prepare uniform bimetallic catalysts with controlled particle properties. In general, colloidal metal ratios are reasonably variable and controllable. Further, the application of solution and surface characterization techniques may ultimately help correlate solution synthetic schemes to catalytic activity. [Pg.93]

Liquid multiphasic systems, where one of the phases is catalyst-philic, are attractive for organic transformation, as they provide built-in methods of catalyst separation and product recovery, as well as advantages of catalytic efficiency. The present chapter focuses on recent developments of catalyst-philic phases used in conjunction with heterogeneous catalysts. Interest in this field is fueled by the desire to combine the high catalytic efficiency typical of homogeneous catalysis with the easy product-catalyst separation features provided by heterogeneous catalysis and in situ phase separations. [Pg.131]

For the production of chemicals, food additives and pharmaceutical products, homogeneous catalysis offers some attractive features such as a high selectivity and activity, e.g. in asymmetric synthesis. However, since most homogeneous catalysts are relatively expensive, their current industrial application is limited [3]. On the other hand, heterogeneous catalysts can easily be separated from the products and can be recycled efficiently. Membrane separations with emphasis on nanofil-tration and ultrafiltration will allow for a similar recyclability of homogeneous catalysts, which is important both from an environmental as well as a commercial... [Pg.528]

A unique titanium(IV)-silica catalyst prepared by impregnating silica with TiCLt or organotitanium compounds exhibits excellent properties with selectivities comparable to the best homogeneous molybdenum catalysts.285 The new zeolite-like catalyst titanium silicalite (TS-1) featuring isomorphous substitution of Si(IV) with Ti(IV) is a very efficient heterogeneous catalyst for selective oxidations with H2C>2.184,185 It exhibits remarkable activities and selectivities in epoxidation of simple olefins.188,304-306 Propylene, for instance, was epoxidized304 with 97% selectivity at 90% conversion at 40°C. Shape-selective epoxidation of 1- and 2-hexenes was observed with this system that failed to catalyze the transformation of cyclohexene.306 Surface peroxotitanate 13 is suggested to be the active spe-... [Pg.457]

Compared with other kinds of catalysts, for example homogeneous catalysts, in which ligands are responsible for specificity, and heterogeneous catalysts, in which catalyti-cally active centers are attached to solid carriers such as zeolites or metal oxides, enzymes feature the advantages and disadvantages listed in Table 1.1. [Pg.8]

Usually, the typology of batch reactors also includes the semi-batch gas-liquid reactors, in which a gaseous phase is fed continuously in order to provide one of the reactants. A typical example is given by the reactors used both in different oxidative industrial processes and in the active sludge processes for the treatment of wastewater. It is possible to distinguish between the bubble columns (Fig. 7.1(c)), in which the gas rises undisturbed in the liquid phase, and the bubble stirred reactor, in which a mechanical mixer is added. Finally, the slurry reactors can be considered, in which the liquid phase contains a finely dispersed solid phase as well, which can act as a reactant or as a heterogeneous catalyst these reactors assume in general the features of Fig. 7.1(d). [Pg.161]

Heterogeneous copper catalysts prepared with the chemisorption-hydrolysis technique are effective systems for hydrogen transfer reactions, namely carbonyl reduction, alcohol dehydrogenation and racemization, and allylic alcohol isomerization. Practical concerns argue for the use of these catalysts for synthetic purposes because of their remarkable performance in terms of selectivity and productivity, which are basic features for the application of heterogeneous catalysts to fine chemicals synthesis. Moreover, in all these reactions the use of these materials allows a simple, safe, and clean protocol. [Pg.333]

Since the last review by Venuto in 1968,[1] there has been a continuous interest in the application of microporous and mesoporous materials as catalysts in the synthesis of bulk and fine chemicals.[211 Indeed, their acidic and basic properties can be combined with their structural properties in order to take advantage of their adsorption and shape selectivity properties, the latter being an advantageous feature of zeolites compared with other heterogeneous catalysts. Another important aspect... [Pg.141]


See other pages where Heterogeneous catalysts features is mentioned: [Pg.167]    [Pg.167]    [Pg.155]    [Pg.157]    [Pg.71]    [Pg.152]    [Pg.335]    [Pg.93]    [Pg.115]    [Pg.914]    [Pg.548]    [Pg.30]    [Pg.368]    [Pg.1522]    [Pg.270]    [Pg.455]    [Pg.496]    [Pg.208]    [Pg.208]    [Pg.234]    [Pg.304]    [Pg.157]    [Pg.320]    [Pg.177]    [Pg.888]    [Pg.327]    [Pg.314]    [Pg.875]    [Pg.86]    [Pg.43]    [Pg.204]    [Pg.236]    [Pg.178]    [Pg.40]    [Pg.212]    [Pg.190]    [Pg.171]    [Pg.2]    [Pg.55]   
See also in sourсe #XX -- [ Pg.53 ]




SEARCH



Catalyst features

Catalysts heterogeneity

Catalysts heterogeneous

Catalysts heterogenous

Heterogenized catalysts

© 2024 chempedia.info