Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homogeneous catalysts examples

Alkynes, on the other hand, readily undergo palladium-catalysed hydrostannation with a homogeneous catalyst. Examples are given in equations 4-67109 and 4-68,110 and further details are given in the section on the preparation of vinylstannanes (Section 8.1.1). [Pg.59]

Catalysts which are in the same phase as the reactants (e.g. they are all in solution) are termed homogeneous catalysts. Examples of homogeneous catalysis include the hydrolysis of sugar (page 254), and the catalysis of ozone destruction by CT (see page 394). Another example is the reaction of persulfate (S20 (aq)) and iodide (I (aq)) ions which obeys the overall reaction... [Pg.262]

A catalyst that is present in the same phase as the reactants in a reaction mixture is called a homogeneous catalyst. Examples abound both in solution and in the gas phase. Consider, for example, the decomposition of aqueous hydrogen peroxide, H202(uq), into water and oxygen ... [Pg.589]

Homogeneous catalysts. With a homogeneous catalyst, the reaction proceeds entirely in the vapor or liquid phase. The catalyst may modify the reaction mechanism by participation in the reaction but is regenerated in a subsequent step. The catalyst is then free to promote further reaction. An example of such a homogeneous catalytic reaction is the production of acetic anhydride. In the first stage of the process, acetic acid is pyrolyzed to ketene in the gas phase at TOO C ... [Pg.46]

A catalyst is defined as a substance that influences the rate or the direction of a chemical reaction without being consumed. Homogeneous catalytic processes are where the catalyst is dissolved in a liquid reaction medium. The varieties of chemical species that may act as homogeneous catalysts include anions, cations, neutral species, enzymes, and association complexes. In acid-base catalysis, one step in the reaction mechanism consists of a proton transfer between the catalyst and the substrate. The protonated reactant species or intermediate further reacts with either another species in the solution or by a decomposition process. Table 1-1 shows typical reactions of an acid-base catalysis. An example of an acid-base catalysis in solution is hydrolysis of esters by acids. [Pg.26]

Catalytic processes frequently require more than a single chemical function, and these bifunctional or polyfunctional materials innst be prepared in away to assure effective communication among the various constitnents. For example, naphtha reforming requires both an acidic function for isomerization and alkylation and a hydrogenation function for aromati-zation and saturation. The acidic function is often a promoted porous metal oxide (e.g., alumina) with a noble metal (e.g., platinum) deposited on its surface to provide the hydrogenation sites. To avoid separation problems, it is not unusual to attach homogeneous catalysts and even enzymes to solid surfaces for use in flow reactors. Although this technique works well in some environmental catalytic systems, such attachment sometimes modifies the catalytic specifici-... [Pg.227]

Although a catalyst does not appear in the balanced equation for a reaction, the concentration of a homogeneous catalyst does appear in the rate law. For example, the reaction between the triiodide ion and the azide ion is very slow unless a catalyst such as carbon disulfide is present ... [Pg.686]

The results obtained in reactions involving the two first examples showed a reduced catalytic activity compared to the homogeneous catalyst, a situation that may be due to diffusion problems. Enantioselectivity was similar or slightly lower than in solution, with 80% ee [21] and 58% ee [22] in the epox-idation of ds-/l-methylstyrene with NaOCl providing the best results. Only in the last example was an improvement in enantioselectivity reported from 51% to 91% ee in the epoxidation of a-methylstyrene. Recovery of the catalyst was only considered in one case [21] and a significant decrease in enantioselectivity was observed on reuse. [Pg.161]

The potential for the use of catalysis in support of sustainability is enormous [102, 103]. New heterogeneous and homogeneous catalysts for improved reaction selectivity, and catalyst activity and stabihty, are needed, for example, new catalytic materials with new carbon modifications for nanotubes, new polymers. [Pg.155]

The most widely used homogeneous catalysts are simple acids and bases which catalyse well-known reactions such as ester and amide hydrolysis, and esterification. Such catalysts are inexpensive enough that they can be neutralized, easily separated fi om organic materials, and disposed of. This, of course, is not a good example of green chemistry and contributes to the huge quantity of aqueous salt waste generated by industry. [Pg.109]

In this brief review we illustrated on selected examples how combinatorial computational chemistry based on first principles quantum theory has made tremendous impact on the development of a variety of new materials including catalysts, semiconductors, ceramics, polymers, functional materials, etc. Since the advent of modem computing resources, first principles calculations were employed to clarify the properties of homogeneous catalysts, bulk solids and surfaces, molecular, cluster or periodic models of active sites. Via dynamic mutual interplay between theory and advanced applications both areas profit and develop towards industrial innovations. Thus combinatorial chemistry and modem technology are inevitably intercoimected in the new era opened by entering 21 century and new millennium. [Pg.11]

In a micro reactor, there is much more surface available than in standard reactors [18]. Thus, surface-chemistry routes may dominate bulk-chemistry routes. In this context, it was found sometimes micro-reactor routes can omit the addition of costly homogeneous catalysts, since the surface now undertakes the action of the catalyst. This was demonstrated both at the examples of the Suzuki coupling and the esterification of pyrenyl-alkyl acids. [Pg.41]

Although most industrial catalysts are heterogeneous, a growing number of industrial reactions use homogeneous catalysts. One example is the production of acetic acid. Most of the 2.1 billion kilograms of acetic acid produced annually is used in the polymer industry. The reaction of methanol and carbon monoxide to form acetic acid is catalyzed by a rhodium compound that dissolves in methanol ... [Pg.1110]

Homogeneous catalysts are very often known as examples of single-site catalysts characterized by complete structural definition and (presumably) complete knowledge of the chemical processes occurring at their catalytic centers. It is a matter of fact that the homogeneous catalysts are molecular complexes constituted by an active core containing a single active atom (of-... [Pg.38]

See Van Leeuwen (2001) for more examples of deactivation of homogeneous catalysts. [Pg.115]

A number of examples have been cited by Chakrabarti and Sharma (1993) and Sharma (1995). The example of etherification of phenols, substituted phenols, cresols, naphthols, etc., with isobutylene and isoamylene may be empahsized where homogeneous catalysts lead to... [Pg.128]

We encounter homogeneous catalysts in both step-growth and chain-growth polymerization processes. We saw several examples of these types of reactions in Chapter 2. For example, the acid catalyzed polymerization of polyesters occurs via a homogeneous process as do some metallocene catalyzed polymerization of polyolefins. [Pg.86]


See other pages where Homogeneous catalysts examples is mentioned: [Pg.166]    [Pg.161]    [Pg.111]    [Pg.166]    [Pg.161]    [Pg.111]    [Pg.110]    [Pg.636]    [Pg.2]    [Pg.74]    [Pg.71]    [Pg.953]    [Pg.66]    [Pg.342]    [Pg.299]    [Pg.427]    [Pg.431]    [Pg.125]    [Pg.126]    [Pg.129]    [Pg.129]    [Pg.141]    [Pg.195]    [Pg.425]    [Pg.376]    [Pg.1335]    [Pg.24]    [Pg.115]    [Pg.678]    [Pg.65]    [Pg.26]    [Pg.72]    [Pg.73]    [Pg.169]   
See also in sourсe #XX -- [ Pg.722 ]

See also in sourсe #XX -- [ Pg.830 ]

See also in sourсe #XX -- [ Pg.913 ]




SEARCH



Catalyst homogenous

Catalysts homogeneous

© 2024 chempedia.info