Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterogeneity fixed

This chapter discusses the steps involved in the development and design of a new S02 oxidation catalyst VK69, which was introduced to the market in 1996 by Haldor Topsoe. The strategy and many of the methods are generally applicable to heterogeneous fixed bed catalysts, partly to fluid and slurry bed catalysts, and less relevant for homogeneous catalysts as found in organic synthesis and enzymatic reactions. [Pg.312]

For the commercial production of vinyl acetate, a procedure with a heterogeneous fixed-bed catalyst is exclusively applied today. The catalysts usually consist of palladium salts, mostly the acetate, or palladium metal together with alkali acetate supported on a carrier such as alumina, silica, or carbon without any additional oxidant. This process avoids the formation of larger amounts of by-products. Thus, from ethylene vinyl acetate and from propene, allyl acetate is obtained exclusively. [Pg.1325]

The pseudo-homogeneous fixed bed dispersion models are divided into three categories The axial dispersion model, the conventional two-dimensional dispersion model, and the full two-dimensional axi-symmetrical model formulation. The heterogeneous fixed bed dispersion models can be grouped in a similar way, but one dimensional formulations are employed in most cases. [Pg.957]

Table 4.1 Pseudo-homogeneous and heterogeneous fixed bed reactor classification... Table 4.1 Pseudo-homogeneous and heterogeneous fixed bed reactor classification...
Erdos, E. (1967) "Mathematical treatment of the heterogeneous fixed-b reactors". Coll. Czech. Chem. Comm., 32, 1653-64. [Pg.496]

The microscopic understanding of tire chemical reactivity of surfaces is of fundamental interest in chemical physics and important for heterogeneous catalysis. Cluster science provides a new approach for tire study of tire microscopic mechanisms of surface chemical reactivity [48]. Surfaces of small clusters possess a very rich variation of chemisoriDtion sites and are ideal models for bulk surfaces. Chemical reactivity of many transition-metal clusters has been investigated [49]. Transition-metal clusters are produced using laser vaporization, and tire chemical reactivity studies are carried out typically in a flow tube reactor in which tire clusters interact witli a reactant gas at a given temperature and pressure for a fixed period of time. Reaction products are measured at various pressures or temperatures and reaction rates are derived. It has been found tliat tire reactivity of small transition-metal clusters witli simple molecules such as H2 and NH can vary dramatically witli cluster size and stmcture [48, 49, M and 52]. [Pg.2393]

Mitsui Toatsu Chemical, Inc. disclosed a similar process usiag Raney copper (74) shortiy after the discovery at Dow, and BASF came out with a variation of the copper catalyst ia 1974 (75). Siace 1971 several hundred patents have shown modifications and improvements to this technology, both homogeneous and heterogeneous, and reviews of these processes have been pubHshed (76). Nalco Chemical Company has patented a process based essentially on Raney copper catalyst (77) ia both slurry and fixed-bed reactors and produces acrylamide monomer mainly for internal uses. Other producers ia Europe, besides Dow and American Cyanamid, iaclude AUied CoUoids and Stockhausen, who are beheved to use processes similar to the Raney copper technology of Mitsui Toatsu, and all have captive uses. Acrylamide is also produced ia large quantities ia Japan. Mitsui Toatsu and Mitsubishi are the largest producers, and both are beheved to use Raney copper catalysts ia a fixed bed reactor and to sell iato the merchant market. [Pg.135]

Butane-Based Fixed-Bed Process Technology. Maleic anhydride is produced by reaction of butane with oxygen using the vanadium phosphoms oxide heterogeneous catalyst discussed earlier. The butane oxidation reaction to produce maleic anhydride is very exothermic. The main reaction by-products are carbon monoxide and carbon dioxide. Stoichiometries and heats of reaction for the three principal reactions are as follows ... [Pg.455]

Oleoresin. Natural oleoresins are exudates from plants, whereas prepared oleoresins are solvent extracts of botanicals, which contain oil (both volatile and, sometimes, fixed), and the resinous matter of the plant. Natural oleoresins are usually clear, viscous, and light-colored Hquids, whereas prepared oleoresins are heterogeneous masses of dark color. [Pg.296]

Future Developments. The most recent advance in detergent alkylation is the development of a soHd catalyst system. UOP and Compania Espanola de Petroleos SA (CEPSA) have disclosed the joint development of a fixed-bed heterogeneous aromatic alkylation catalyst system for the production of LAB. Petresa, a subsidiary of CEPSA, has announced plans for the constmction of a 75,000 t/yr LAB plant in Quebec, Canada, that will use the UOP / -paraffin dehydrogenation process and the new fixed-bed alkylation process (85). [Pg.52]

To manufacture the lower aLkylamines by Method 1, ammonia and alcohol are passed continuously over a fixed bed containing the catalyst in a gas—soHd heterogeneous reaction. The ammonia to alcohol mole ratio varies from 2 1 to 6 1 depending on the amine desired as shown in Figure 1. Operating conditions are maintained in the range from 300—500°C and 790—3550 kPa (100—500 psig) at a gas hourly space velocity between 500—1500 vol/vol per hour. Yields are typically in excess of 90%. [Pg.199]

Heterogeneous hydrogenation catalysts can be used in either a supported or an unsupported form. The most common supports are based on alurnina, carbon, and siUca. Supports are usually used with the more expensive metals and serve several purposes. Most importandy, they increase the efficiency of the catalyst based on the weight of metal used and they aid in the recovery of the catalyst, both of which help to keep costs low. When supported catalysts are employed, they can be used as a fixed bed or as a slurry (Uquid phase) or a fluidized bed (vapor phase). In a fixed-bed process, the amine or amine solution flows over the immobile catalyst. This eliminates the need for an elaborate catalyst recovery system and minimizes catalyst loss. When a slurry or fluidized bed is used, the catalyst must be separated from the amine by gravity (settling), filtration, or other means. [Pg.259]

Various experimental methods to evaluate the kinetics of flow processes existed even in the last centuty. They developed gradually with the expansion of the petrochemical industry. In the 1940s, conversion versus residence time measurement in tubular reactors was the basic tool for rate evaluations. In the 1950s, differential reactor experiments became popular. Only in the 1960s did the use of Continuous-flow Stirred Tank Reactors (CSTRs) start to spread for kinetic studies. A large variety of CSTRs was used to study heterogeneous (contact) catalytic reactions. These included spinning basket CSTRs as well as many kinds of fixed bed reactors with external or internal recycle pumps (Jankowski 1978, Berty 1984.)... [Pg.53]

Heterogeneous catalysts can be divided into two types those for use in fixed-bed processing wherein the catalyst is stationary and the reactants pass upward (flooded-bed) or downward (trickle-bed) over it, and those for use it slurry or fluidized-bed processing. Fixed-bed catalysts are relatively large particles, I/32 to 1 /4 inch, in the form of cylinders, spheres, or granules. Slurry or fluidized-bed catalysts are fine powders, which can be suspended readily in a liquid or gas, respectively. Fixed-bed processing is especially suited to large-scale production, and many important bulk chemicals are made in this mode. [Pg.2]

The vapor-phase Badger process (Eigure 10-2), which has been commercialized since 1980, can accept dilute ethylene streams such as those produced from ECC off gas. A zeolite type heterogeneous catalyst is used in a fixed bed process. The reaction conditions are 420°C and 200-300 psi. Over 98% yield is obtained at 90% conversion." Polyethylbenzene (polyalkylated) and unreacted benzene are recycled and join the fresh feed to the reactor. The reactor effluent is fed to the benzene fractionation system to recover unreacted benzene. The bottoms... [Pg.265]

Alkylation of benzene with linear monoolefms is industrially preferred. The Detal process (Figure 10-9) combines the dehydrogenation of n-paraffins and the alkylation of benzene. Monoolefms from the dehydrogenation section are introduced to a fixed-bed alkylation reactor over a heterogeneous solid catalyst. Older processes use HF catalysts in a liquid phase process at a temperature range of 40-70°C. The general alkylation reaction of benzene using alpha olefins could be represented as ... [Pg.275]

Ammonolysis of phenol occurs in the vapor phase. In the Scientific Design Co. process (Figure 10-10), a mixed feed of ammonia and phenol is heated and passed over a heterogeneous catalyst in a fixed-bed sys-... [Pg.279]

This is an equation which fixes the relation existing between the number of phases (/ ), the number of components ( i), and the variance, or number of degrees of f reedom (F), of a heterogeneous system in equilibrium, subject to certain conditions which are usually satisfied in practice. The rule states that... [Pg.169]

By the variance, or number of degrees of freedom of the system, we mean the number of independent variables which must be arbitrarily fixed before the state of equilibrium is completely determined. According to the number of these, we have avariant, univariant, bivariant, trivariant,. . . systems. Thus, a completely heterogeneous system is univariant, because its equilibrium is completely specified by fixing a single variable— the temperature. But a salt solution requires two variables— temperature and composition—to be fixed before the equilibrium is determined, since the vapour-pressure depends on both. [Pg.170]

The line ah is that of the heterogeneous states its position is fixed by the following rule, due to Maxwell (1875). [Pg.182]

Steps 1 through 9 constitute a model for heterogeneous catalysis in a fixed-bed reactor. There are many variations, particularly for Steps 4 through 6. For example, the Eley-Rideal mechanism described in Problem 10.4 envisions an adsorbed molecule reacting directly with a molecule in the gas phase. Other models contemplate a mixture of surface sites that can have different catalytic activity. For example, the platinum and the alumina used for hydrocarbon reforming may catalyze different reactions. Alternative models lead to rate expressions that differ in the details, but the functional forms for the rate expressions are usually similar. [Pg.354]

Equation (10.12) is the simplest—and most generally useful—model that reflects heterogeneous catalysis. The active sites S are fixed in number, and the gas-phase molecules of component A compete for them. When the gas-phase concentration of component A is low, the k a term in Equation (10.12) is small, and the reaction is first order in a. When a is large, all the active sites are occupied, and the reaction rate reaches a saturation value of kjkd-The constant in the denominator, is formed from ratios of rate constants. This makes it less sensitive to temperature than k, which is a normal rate constant. [Pg.356]


See other pages where Heterogeneity fixed is mentioned: [Pg.99]    [Pg.927]    [Pg.430]    [Pg.430]    [Pg.220]    [Pg.472]    [Pg.232]    [Pg.512]    [Pg.454]    [Pg.103]    [Pg.435]    [Pg.363]    [Pg.99]    [Pg.927]    [Pg.430]    [Pg.430]    [Pg.220]    [Pg.472]    [Pg.232]    [Pg.512]    [Pg.454]    [Pg.103]    [Pg.435]    [Pg.363]    [Pg.2789]    [Pg.2826]    [Pg.165]    [Pg.106]    [Pg.525]    [Pg.526]    [Pg.166]    [Pg.358]    [Pg.119]    [Pg.232]    [Pg.98]    [Pg.288]    [Pg.18]    [Pg.185]    [Pg.421]   
See also in sourсe #XX -- [ Pg.458 , Pg.459 ]




SEARCH



Heterogeneous Catalysts Fixed on Ionites

Heterogeneous model of fixed bed

© 2024 chempedia.info