Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterogeneity experimental data

The use of heterogeneous experimental data from different sources and laboratories can affect the quality of QSPR models, by increasing the noise in the modeled response, thus affecting the stability and predictivity of models. Other potential obstacle in the development of robust, predictive, and reliable models is the insufficient data size (the range of composition is limited by the occurrence of crystallization. [Pg.115]

From the earliest days, the BET model has been subject to a number of criticisms. The model assumes all the adsorption sites on the surface to be energetically identical, but as was indicated in Section 1.5 (p. 18) homogeneous surfaces of this kind are the exception and energetically heterogeneous surfaces are the rule. Experimental evidence—e.g. in curves of the heat of adsorption as a function of the amount adsorbed (cf. Fig. 2.14)—demonstrates that the degree of heterogeneity can be very considerable. Indeed, Brunauer, Emmett and Teller adduced this nonuniformity as the reason for the failure of their equation to reproduce experimental data in the low-pressure region. [Pg.49]

Many simple systems that could be expected to form ideal Hquid mixtures are reasonably predicted by extending pure-species adsorption equiUbrium data to a multicomponent equation. The potential theory has been extended to binary mixtures of several hydrocarbons on activated carbon by assuming an ideal mixture (99) and to hydrocarbons on activated carbon and carbon molecular sieves, and to O2 and N2 on 5A and lOX zeoHtes (100). Mixture isotherms predicted by lAST agree with experimental data for methane + ethane and for ethylene + CO2 on activated carbon, and for CO + O2 and for propane + propylene on siUca gel (36). A statistical thermodynamic model has been successfully appHed to equiUbrium isotherms of several nonpolar species on 5A zeoHte, to predict multicomponent sorption equiUbria from the Henry constants for the pure components (26). A set of equations that incorporate surface heterogeneity into the lAST model provides a means for predicting multicomponent equiUbria, but the agreement is only good up to 50% surface saturation (9). [Pg.285]

The vapor is thea withdrawa from the stiH as distillate. The changing Hquid composition is most coavenieafly described by foUowiag the trajectory (or residue curve) of the overall composition of all the coexistiag Hquid phases. An exteasive amouat of valuable experimental data for the water—acetoae—chloroform mixture, including biaary and ternary LLE, VLE, and VLLE data, and both simple distillation and batch distillation residue curves are available (93,101). Experimentally determined simple distillation residue curves have also been reported for the heterogeneous system water—formic acid—1,2-dichloroethane (102). [Pg.192]

Another school has also developed and attempted to understand the functional dependence of adsorption on heterogeneous surfaces on the vapor pressure and temperature. Various empirical or semiempirical equations were proposed [24-26] and used later to represent experimental data and to evaluate EADF by inverting Eq. (1), which belongs to the class of linear Fredholm integrals of the first kind [27]. [Pg.247]

Objective Evaluation of Color. In recent years a method has been devised and internationally adopted (International Commission on Illumination, I.C.I.) that makes possible objective specification of color in terms of equivalent stimuli. It provides a common language for description of the color of an object illuminated by a standard illuminant and viewed by a standard observer (H). Reflectance spectro-photometric curves, such as those described above, provide the necessary data. The results are expressed in one of two systems the tristimulus system in which the equivalent stimulus is a mixture of three standard primaries, or the heterogeneous-homogeneous system in which the equivalent stimulus is a mixture of light from a standard heterogeneous illuminant and a pure spectrum color (dominant wave-length-purity system). These systems provide a means of expressing the objective time-constant spectrophotometric results in numerical form, more suitable for tabulation and correlation studies. In the application to food work, the necessary experimental data have been obtained with spectrophotometers or certain photoelectric colorimeters. [Pg.7]

A recent series of papers [18, 24, 32-34] substantially clears up the three-dimensional polymerization mechanism in the AAm-MBAA system. Direct observation of the various types of acrylamide group consumption using NMR technique, analysis of conversion at the gel-point, and correlation of the elastic modulus with swelling indicate a considerable deviation of the system from the ideal model and a low efficiency of MBAA as a crosslinker. Most of these experimental data, however, refer to the range of heterogeneous hydrogels where swelling is not more than 80 ml ml-1 [24]. [Pg.103]

Miller J.A., Speckhard T.A., Homan J.G., and Cooper S.L. Monte Carlo simulation study of the pol3mier-ization of polyurethane block co-polymers. 4. ModeUng of experimental data. Polymer, 28, 758, 1987. Speckhard T.A., Miller J.A., and Cooper S.L., Monte Carlo simulation study of polymerization of polyurethane block co-pol3miers. 1. Natural compositional heterogeneity under ideal polymerization condition, Macromolecules, 19, 1550, 1986. [Pg.159]

Computational chemistry has reached a level in which adsorption, dissociation and formation of new bonds can be described with reasonable accuracy. Consequently trends in reactivity patterns can be very well predicted nowadays. Such theoretical studies have had a strong impact in the field of heterogeneous catalysis, particularly because many experimental data are available for comparison from surface science studies (e.g. heats of adsorption, adsorption geometries, vibrational frequencies, activation energies of elementary reaction steps) to validate theoretical predictions. [Pg.215]

High resolution electron microscopy has recently demonstrated the capability to directly resolve the atomic structure of surfaces on small particles and thin films. In this paper we briefly review experimental observations for gold (110) and (111) surfacest and analyse how these results when combined with theoretical and experimental morphological studies, influence the interpretation of geometrical catalytic effects and the transfer of bulk surface experimental data to heterogeneous catalysts. [Pg.341]

INAA is well suited to study homogeneity of small samples because of its dynamic range of elemental sensitivity. The technique allows for the use of small solid samples, with the smallest usable sample size in the range of 0.5 mg to i mg as determined by handling and blank considerations. The INAA analytical procedure is well understood and characterized with mathematical relationships. Its analytical uncertainties can be sufficiently controlled and can be well determined for a particular procedure. This allows the calculation of the contribution of material heterogeneity to the uncertainty budget based on experimental data. [Pg.134]

It was shown later that a mass transfer rate sufficiently high to measure the rate constant of potassium transfer [reaction (10a)] under steady-state conditions can be obtained using nanometer-sized pipettes (r < 250 nm) [8a]. Assuming uniform accessibility of the ITIES, the standard rate constant (k°) and transfer coefficient (a) were found by fitting the experimental data to Eq. (7) (Fig. 8). (Alternatively, the kinetic parameters of the interfacial reaction can be evaluated by the three-point method, i.e., the half-wave potential, iii/2, and two quartile potentials, and ii3/4 [8a,27].) A number of voltam-mograms obtained at 5-250 nm pipettes yielded similar values of kinetic parameters, = 1.3 0.6 cm/s, and a = 0.4 0.1. Importantly, no apparent correlation was found between the measured rate constant and the pipette size. The mass transfer coefficient for a 10 nm-radius pipette is > 10 cm/s (assuming D = 10 cm /s). Thus the upper limit for the determinable heterogeneous rate constant is at least 50 cm/s. [Pg.392]

Thus, we considered a number of examples of application of the sensor technique in experiments on heterogeneous recombination of active particles, pyrolysis and photolysis of chemical compounds in gas phase and on the surface of solids, such as oxides of metals and glasses. The above examples prove that, in a number of cases, compact detectors of free atoms and radicals allow one to reveal essential elements of the mechanisms of the processes under consideration. Moreover, this technique provides new experimental data, which cannot be obtained by other methods. Sensors can be used for investigations in both gas phase and adsorbed layers. This technique can also be used for studying several types of active particles. It allows one to determine specific features of distribution of the active particles along the reaction vessel. The above experiments demonstrate inhomogeneity of the reaction mixture for the specified processes and, consequently, inhomogeneity of the... [Pg.233]

We thus see that the electronic theory of heterogeneous photocatalytic reactions not only makes an attempt to explain, from the unified point of view, a large amount of experimental data, often contradictory at first glance, but also predicts new effects awaiting experimental verification. No doubt, the photocatalytic effect on semiconductors which has only recently become the subject matter of scientific research requires further experimental and theoretical study. [Pg.206]


See other pages where Heterogeneity experimental data is mentioned: [Pg.338]    [Pg.86]    [Pg.338]    [Pg.86]    [Pg.117]    [Pg.658]    [Pg.1941]    [Pg.249]    [Pg.251]    [Pg.245]    [Pg.12]    [Pg.14]    [Pg.268]    [Pg.388]    [Pg.185]    [Pg.190]    [Pg.63]    [Pg.94]    [Pg.563]    [Pg.123]    [Pg.277]    [Pg.294]    [Pg.513]    [Pg.191]    [Pg.213]    [Pg.359]    [Pg.391]    [Pg.77]    [Pg.231]    [Pg.29]    [Pg.131]    [Pg.303]    [Pg.475]    [Pg.190]    [Pg.191]    [Pg.246]    [Pg.444]    [Pg.90]    [Pg.141]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Experimental Data on Heterogeneity

Experimental kinetic data of heterogeneous reactions

© 2024 chempedia.info