Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hetero imines

On the basis of these findings, the reaction of acyl imines with methanesulfony 1 chloride-triethylamine is not expected to proceed via a sulfene intermediate as previously proposed [99]. Again, a carbanion intermediate accounts nicely for the experimental facts. The electrophihcity of the hetero-l,3-diene is exdemely high, therefore the carbanion, formed on reaction of triethylamme with methanesulfonyl chloride, should undergo nucleophilic attack at C-4 of the hetero-1,3-diene faster than sulfene formabon by chloride elimination. [Pg.850]

The above cycloaddition process consists of two separate [3-1-2] cycloaddition steps and represents a 1,3-2,4 addition of a multiple bond system to a hetero-1,3-diene [7S7]. The structure ot the azomethine imine intermediate has been proved unequivocally by X-ray analysis [195] Ethylene [194], acetylene [/iS2] . many alkyl- and aryl- as well sgemmal dialkyl- and diaryl-substituted alkenes [196,197, 198, 199], dienes [200], and alkynes [182, 201], certain cyclic alkenes [198, 199,... [Pg.865]

Cycloaddition reactions where bis(trifluoromethyl)-substituted hetero-1,3-dienes act as dienophiles have been descnbed for open-chain and cyclic dienes [115, 126, 127] The balance of the diene -dienophile activity of bis(tnfluoro-methyl)-substituted hetero-l,3-dienes can be influenced strongly by the substituents bonded to the inuno nitrogen atom For instance, A/-(arylsulfonyl) denvatives of tnfluoroacetaldimine and hexafluoroacetone imine do not act as dienes but exhibit only the dienophile reactivity of electron deficient imines [5 229, 234,235, 236 237] (equation 52)... [Pg.871]

The cyclization pathway proposed (81UK1252) involves nucleophilic substitution of the hetero group (XR) by the formamide amino group to form either enyne formamide 157 or imine 158. [Pg.200]

Catalytic enantioselective hetero-Diels-Alder reactions are covered by the editors of the book. Chapter 4 is devoted to the development of hetero-Diels-Alder reactions of carbonyl compounds and activated carbonyl compounds catalyzed by many different chiral Lewis acids and Chapter 5 deals with the corresponding development of catalytic enantioselective aza-Diels-Alder reactions. Compared with carbo-Diels-Alder reactions, which have been known for more than a decade, the field of catalytic enantioselective hetero-Diels-Alder reactions of carbonyl compounds and imines (aza-Diels-Alder reactions) are very recent. [Pg.3]

The basic concept of activation in hetero-Diels-Alder reactions is to utilize the lone-pair electrons of the carbonyl and imine functionality for coordination to the Lewis acid. The coordination of the dienophile to the Lewis acid changes the FMOs of the dienophile and for the normal electron-demand reactions a decrease of the LUMO and HOMO energies is observed leading to a better interaction with... [Pg.314]

In a synthesis of 2,3-di(hetero)arylpyrido[3,2 [l,4]thiazepines developed by Couture, 2-chloro-3-formylpyridine is reacted with arylmethylamines to form the imines. Deprotonation with LDA at -78 °C followed by treatment with non enolisable aryl thioesters gives the title compounds which may be further annulated by irradiation in benzene in the presence of iodine and propylene oxide <96S986> (Scheme 14). [Pg.329]

The use of chiral bis(oxazoline) copper catalysts has also been often reported as an efficient and economic way to perform asymmetric hetero-Diels-Alder reactions of carbonyl compounds and imines with conjugated dienes [81], with the main focus on the application of this methodology towards the preparation of biologically valuable synthons [82]. Only some representative examples are listed below. For example, the copper complex 54 (Scheme 26) has been successfully involved in the catalytic hetero Diels-Alder reaction of a substituted cyclohexadiene with ethyl glyoxylate [83], a key step in the total synthesis of (i )-dihydroactinidiolide (Scheme 30). [Pg.118]

Bolm et al. [108] prepared a C2-symmetric bis (sulfoximine) as ligand for the copper-catalyzed hetero-Diels-Alder reaction. The stereogenic sulfur atom being located near the AT-coordinating atom, these structures were assumed to be promising for asymmetric catalysis. Their Hgand (79 in Scheme 43) was synthesized by palladium-catalyzed N-aryl imination from 1,2-dibromobenzene and (S)-S-methyl-S-phenylsulfoximine with Pd2dba3 in 70% yield. [Pg.127]

In marked contrast to the other hetero atom multiple bond functions cited in this section the >C=N- imine bond was not found to undergo hydrometalation. Imines with neighboring C-H bonds as in PhCH=NMe do react with 1 via imine/enamine tautomerism, but not by hydrozirconation [197]. [Pg.267]

Similar aza-Diels-Alder reactions of Danishefsky s diene with imines or aldehydes and amines in water took place smoothly under neutral conditions in the presence of a catalytic amount of an alkaline salt such as sodium triflate or sodium tetraphenylborate to afford dihydro-4-pyridones in high yields (Eq. 12.49).117 Antibodies have also been found to catalyze hetero-Diels-Alder reactions.118... [Pg.403]

Optically active /3-ketoiminato cobalt(III) compounds based on chiral substituted ethylenedi-amine find use as efficient catalysts for the enatioselective hetero Diels Alder reaction of both aryl and alkyl aldehydes with l-methoxy-(3-(t-butyldimethylsilyl)oxy)-1,3-butadiene.1381 Cobalt(II) compounds of the same class of ligands promote enantioselective borohydride reduction of ketones, imines, and a,/3-unsaturated carboxylates.1382... [Pg.118]

Mesoxalates are highly reactive substrates because of their strongly polarized carbon-oxygen bond. They have been used in pericyclic processes (e.g. Diels-Alder reactions,8 ene reactions,9 [3+2]10 and [2+2]11 cycloadditions), in aldol12 and Wittig as well as Friedel-Crafts reactions.13 Further applications arise from the use of the corresponding imines in hetero Diels-Alder reactions14 and electrophilic cyclizations.15... [Pg.109]

Cyclopropyl imines can be used as five-atom components in intermolecular [5 + 2]-cycloaddition reactions with dimethylacetylene dicarboxylate (DMAD) (Scheme 14).45 In this hetero-[5 + 2]-cycloaddition reaction, dihydroaze-pines are constructed from simple, readily available starting materials. The cyclopropyl imines can be preformed or made in situ by the condensation of cyclopropyl carboxaldehydes and amines. Although, thus far, DMAD is the only... [Pg.611]

The palladium-catalyzed hetero-[4 + 3]-cycloadditions reported by Trost and Marrs utilize a metal-complexed trimethylenemethane as the three-carbon component. These complexes react with a,/3-unsaturated imines to produce seven-membered heterocycles in moderate to good yields.84 Two examples of this reaction were reported and are shown in Equations (13) and (14). Only the [4 + 3]-reaction was observed with a,/3-unsaturated imine 76 however, both the [4 + 3]- and the [3 + 2]-modes of reactivity are observed with a,/3-unsaturated imine 79. [Pg.617]

Whiting and co-workers (231) reported that the chiral diamine 341Cu(OTf)2 complex is moderately effective in inducing the hetero-Diels-Alder reaction between glyoxylate imine (339) and Danishefsky s diene (334). In acetonitrile as solvent, this reaction provides cycloadduct 340 in 58% yield and 86% ee, Eq. 190. [Pg.113]

Jprgensen and co-workers (253) adapted this catalyst system to the hetero-Diels-Alder reaction between Danishefsky s diene and glyoxylate imine. The Tol-BINAP CuC104 proved to be the optimal catalyst for this reaction, affording the... [Pg.131]

Hetero Pauson-Khand reactions with an aldehyde or ketone component have been shown to afford synthetically versatile y-butyrolactones. Buchwald [50] and Crowe [51] independently showed that aliphatic enones and enals react with CO under Cp2Ti(PMe3)2 mediation (Scheme 11). CO insertion and thermal (or oxidative) decomposition gave diastereomerically pure bicyclic y-butyrolactones and stable Cp2Ti(CO)2. Imines did not react under the reaction conditions. [Pg.222]

Prochirality Planar molecules possessing a double bond such as alkenes, imines, and ketones, which do not contain a chiral carbon in one of the side chains, are not chiral. When these molecules coordinate to a metal a chiral complex is formed, unless the alkene etc. has C2V symmetry. In other words, even a simple alkene such as propene will form a chiral complex with a transition metal. So will trans-2-butene, but cis-2-butene won t. If a bare metal atom coordinates to cis-2-butene the complex has a mirror plane, and hence the complex is not chiral. It is useful to give some thought to this and find out whether or not alkenes and hetero-alkenes form chiral complexes. One can also formulate it as follows complexation of a metal to the one face of the alkene gives rise to a certain enantiomer, and complexation to the other face gives rise to the other enantiomer. [Pg.78]

Ab initio calculations on aza-Diels-Alder reactions of electron-deficient imines with buta-l,3-diene show that these reactions are HOMO (diene)-LUMO(dienophile)-controlled and that electron-deficient imines should be more reactive than alkyl-or aryl-imines. The Diels-Alder reaction of r-butyl 2//-azirine-3-carboxylate (80) proceeds with high diastereoselectivity with electron-rich dienes (81) (Scheme 28). The hetero-Diels-Alder additions of imines with sterically demanding dienes yield perhydroquinolines bearing an angular methyl group. The asymmetric hetero-Diels-Alder reaction between alkenyloxazolines and isocyanates produces diastereometri-cally pure oxazolo[3,2-c]pyrimidines. °... [Pg.469]

Density functional and semiempirical AMI molecular orbital calculations have been used to investigate substituent effects on site selectivity in heterocumulene-hetero-diene4 + 2-cycloadditions between ketene imines and acroleins.The new and novel heterocumulenes a, /3-unsaturated thioaldehyde S -oxides (97) behave as both diene... [Pg.474]

In 2006, Akiyama and coworkers established an asymmetric Brpnsted acid-catalyzed aza-Diels-Alder reaction (Scheme 36) [59]. Chiral BINOL phosphate (R)-3o (5 mol%, R = 2,4,6- Pr3-CgH2) bearing 2,4,6-triisopropylphenyl groups mediated the cycloaddition of aldimines 94 derived from 2-amino-4-methylphenol with Danishefsky s diene 95 in the presence of 1.2 equivalents of acetic acid. Piperidinones 96 were obtained in good yields (72 to >99%) and enantioselectivi-ties (76-91% ee). While the addition of acetic acid (pK= 4.8) improved both the reactivity and the selectivity, the use of benzenesulfonic acid (pK= -6.5) as an additive increased the yield, but decreased the enantioselectivity. A strong achiral Brpnsted acid apparently competes with chiral phosphoric acid 3o for the activation of imine 94 and catalyzes a nonasymmetric hetero-Diels-Alder reaction. The role of acetic acid remains unclear. [Pg.424]

A new stereocenter is formed when a synthon 143 with umpoled carbonyl reactivity (d reactivity) is introduced into aldehydes or imines. The enantioselective variant of this type of reaction was a longstanding problem in asymmetric synthesis. The very large majority of a-hetero-snbstitnted carbanions which serve as eqnivalents for synthons like 142 and 143 lead to racemic products with aldehydes or imines. However, enantiomerically pnre acylions and a-hydroxy carboxylic acids or aldehydes (144 and ent-144, respectively) as well as a-amino acids and aldehydes (145 and ent-145) are accessible either by nsing chiral d reagents or by reacting the components in the presence of chiral additives (Scheme 18). [Pg.877]

Four distinct cyclization modes may be possible endo-endo, endo-exo, exo-endo and exo-exo. As before, the first two modes of cyclization produce heterocycles (309, 310) directly (equation 113) while the other two cyclizations give imine-carbocycles (311, 312) (equation 114). Five- or srx-membered cycles may be easily produced directly by this strategy. A wide variety of structurally different hetero- and carbocyclic systems can be obtained. [Pg.420]

Although several Lewis acids are known to catalyze the hetero-Diels-Alder reaction involving imino-dienes or imino-dienophiles (aza-Diels-Alder reaction), a large amount of the catalyst is often necessary. Bi(0Tf)3-xH20 showed higher activity than lanthanide triflates in catalyzing the reactions of imines with Danishefsky s diene (Scheme 15) [72]. [Pg.152]


See other pages where Hetero imines is mentioned: [Pg.127]    [Pg.286]    [Pg.289]    [Pg.190]    [Pg.180]    [Pg.272]    [Pg.587]    [Pg.415]    [Pg.416]    [Pg.316]    [Pg.340]    [Pg.244]    [Pg.252]    [Pg.263]    [Pg.1208]    [Pg.142]    [Pg.27]    [Pg.107]    [Pg.192]    [Pg.270]    [Pg.463]    [Pg.289]    [Pg.243]   
See also in sourсe #XX -- [ Pg.568 ]




SEARCH



Imine - diene hetero-Diels-Alder reaction

Imine additions hetero-Diels-Alder reaction

© 2024 chempedia.info